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The Ideal Model

Ideally a hydromet processes would:

be simple to model accurately
have a low cost for collecting real data

. . . This certainly is not always the case.
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. . . This certainly is not always the case.

To make modeling hydromet processes more
affordable we need methods for:

efficiently collecting real data

modeling the bias between a simulation
and reality
efficient optimization
flexible modeling which quantifies
uncertainty of our data and predictions
uncertainty quantification
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Uncertainty: A Gaussian Distribution
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common:

Mean (µ) of 0
Standard deviation (σ) of 1
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Multivariate Gaussian
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Multivariate Gaussian as a Random Function Generator
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Covariance or Correlation Matrix Σ -
distance related?
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Multivariate Gaussian as a Random Function Generator

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

x

y

−
4

−
2

0
2

4

y

(2πσ2)− n
2 |Σ|−

1
2 e−

1
2 (Y −µ)T Σ−1(Y −µ)

σ2

Covariance or Correlation Matrix Σ -
distance related?

Scott Koermer, Aaron Noble PhD PE (Virginia Tech) Gaussian Process Regresion For Hydrometallurgy 02 March, 2022 9 / 20



Incorporating Data
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Incorporating Data
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Optimization: Expected Improvement
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Application: TREE Recovery(%) for Simulated Leaching Process
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Application: Simulated Leaching Process
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Optimization
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Average Behavior

Monte Carlo Experiment of 100 repitions
Mean number of experiments to
convergence: 15.72
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Summary

GPs are a flexible regression method
Just like a normal distribution, GPs have an inherent quantification of uncertainty
GP Functional uncertainty can be used for active learning experimental designs
The complexity and uncertainty of hydrometallurgical processes provides a motivation for
the utility of such methods.

“All models are wrong, but some are useful” -George Box
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Additional Applications

GP flexibility and uncertainty quantification allows for

Emulation and calibration of computer simulations with long computation time
(dissertation work)

Experimental design where points are specifically added to reduce prediction variance

Modeling data where noise is a function of X
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Thank You!!

Contact Info

email: skoermer@vt.edu

website: skoermer.github.io
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