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Bayesian Methods for Mineral Processing Operations

Scott Carl Koermer

(ABSTRACT)

Increases in demand have driven the development of complex processing tech-
nology for separating mineral resources from exceedingly low grade multi-
component resources. Low mineral concentrations and variable feedstocks can
make separating signal from noise difficult, while high process complexity and
the multi-component nature of a feedstock can make testwork, optimization,
and process simulation difficult or infeasible. A prime example of such a sce-
nario is the recovery and separation of rare earth elements (REEs) and other
critical minerals from acid mine drainage (AMD) using a solvent extraction (SX)
process. In this process the REE concentration found in an AMD source can
vary site to site, and season to season. SX processes take a non-trivial amount
of time to reach steady state. The separation of numerous individual elements
from gangue metals is a high-dimensional problem, and SX simulators can
have a prohibitive computation time. Bayesian statistical methods intrinsically
quantify uncertainty of model parameters and predictions given a set of data
and a prior distribution and model parameter prior distributions. The uncer-
tainty quantification possible with Bayesian methods lend well to statistical
simulation, model selection, and sensitivity analysis. Moreover, Bayesian models
utilizing Gaussian Process priors can be used for active learning tasks which
allow for prediction, optimization, and simulator calibration while reducing data
requirements. However, literature on Bayesian methods applied to separations
engineering is sparse. The goal of this dissertation is to investigate, illustrate,
and test the use of a handful of Bayesian methods applied to process engineering
problems. First further details for the background and motivation are provided
in the introduction. The literature review provides further information regarding
critical minerals, solvent extraction, Bayeisan inference, data reconciliation for
separations, and Gaussian process modeling. The body of work contains four
chapters containing a mixture of novel applications for Bayesian methods and
a novel statistical method derived for the use with the motivating problem.
Chapter topics include Bayesian data reconciliation for processes, Bayesian in-
ference for a model intended to aid engineers in deciding if a process has reached
steady state, Bayesian optimization of a process with unknown dynamics, and
a novel active learning criteria for reducing the computation time required for
the Bayesian calibration of simulations to real data. In closing, the utility of a
handfull of Bayesian methods are displayed. However, the work presented is
not intended to be complete and suggestions for further improvements to the
application of Bayesian methods to separations are provided.
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(GENERAL AUDIENCE ABSTRACT)

Rare earth elements (REEs) are a set of elements used in the manufacture
of supplies used in green technologies and defense. Demand for REEs has
prompted the development of technology for recovering REEs from unconven-
tional resources. One unconventional resource for REEs under investigation
is acid mine drainage (AMD) produced from the exposure of certain geologic
strata as part of coal mining. REE concentrations found in AMD are significant,
although low compared to REE ore, and can vary from site to site and season to
season. Solvent extraction (SX) processes are commonly utilized to concentrate
and separate REEs from contaminants using the differing solubilities of specific
elements in water and oil based liquid solutions.

The complexity and variability in the processes used to concentrate REEs from
AMD with SX motivates the use of modern statistical and machine learning
based approaches for filtering noise, uncertainty quantification, and design
of experiments for testwork, in order to find the truth and make accurate
process performance comparisons. Bayesian statistical methods intrinsically
quantify uncertainty. Bayesian methods can be used to quantify uncertainty
for predictions as well as select which model better explains a data set. The
uncertainty quantification available with Bayesian models can be used for
decision making. As a particular example, the uncertainty quantification
provided by Gaussian process regression lends well to finding what experiments
to conduct, given an already obtained data set, to improve prediction accuracy
or to find an optimum. However, literature is sparse for Bayesian statistical
methods applied to separation processes.

The goal of this dissertation is to investigate, illustrate, and test the use
of a handful of Bayesian methods applied to process engineering problems.
First further details for the background and motivation are provided in the
introduction. The literature review provides further information regarding
critical minerals, solvent extraction, Bayeisan inference, data reconciliation for
separations, and Gaussian process modeling. The body of work contains four
chapters containing a mixture of novel applications for Bayesian methods and
a novel statistical method derived for the use with the motivating problem.
Chapter topics include Bayesian data reconciliation for processes, Bayesian
inference for a model intended to aid engineers in deciding if a process has
reached steady state, Bayesian optimization of a process with unknown dynamics,
and a novel active learning criteria for reducing the computation time required
for the Bayesian calibration of simulations to real data. In closing, the utility
of a handfull of Bayesian methods are displayed. However, the work presented
is not intended to be complete and suggestions for further improvements to the
application of Bayesian methods to separations are provided.
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Chapter 1

Introduction

1.1 Background

Humans have used more minerals from 1900-present than all of history prior
to 1900 (Hartman and Mutmansky 2002). High resource demand driving
technological advancement has led to decreases in average mined ore grade
over time (Rétzer and Schmidt 2018; Slade 1982; Henckens et al. 2016). The
mineralogical barrier is the grade, or purity, at which an ore is not reasonable
to be mined due to the increase in energy requirements (Skinner 1976).

When incorporating technological advances, many mining companies take the
approach of waiting for a new technology to be developed and proven by an
equipment vendor before adoption (Bartos 2007), with proof implying over-
whelming certainty, or lack of uncertainty, that a development is advantageous.
As the mineralogical barrier decreases, smaller mineral quantities in the feed-
stock to a concentration process must be measured for technological performance
calculations. When sampling a feedstock sample heterogeneity and particle het-
erogeneity lead to sampling error. Sample preparation error as well as analytical
error further contribute to the overall sample estimation error (Pitard 1993).
Uncertainty related to the measurement of small concentrations and variability
in the feedstock can lead to further uncertainty in a proposed innovation.

Modeling and the collection of experimental data for process concentrating
a low grade multi-component ore is necessary for feasibility evaluations, but
difficult. Testing n levels for p process parameters requires n? tests to observe
every parameter combination, quickly becoming infeasible for small values of
n and p. For a complicated model, uncertainty related to model parameter
estimates generated from a modest data set translates to prediction uncertainty.
In the best case, process uncertainty can simply lead to slightly off predictions,
and in the worst case a technological innovation can be overlooked due to a
false negative error.

As mineral processing technology becomes more complex, a necessity for un-
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derstanding of the uncertainty of test results for decision making purposes
arises. Tools for exploring and optimizing a complex, yet not fully understood,
process are advantageous for reducing the time between conceptualization by a
researcher and obtaining the proof required by a mining company for adoption.

1.2 Motivation

Rare Earth Elements (REEs; see §2.1) are a subset of 15 elements with increasing
demand and supply issues, which has lead to a multitude of governments to
declare REEs as critical minerals (Nassar and Fortier 2021; Canada 2021;
Skirrow et al. 2013; The European Commission 2020). Researchers have been
creative in finding unconventional resources for REEs (Honaker et al. 2017;
Q. Huang et al. 2018; Ziemkiewicz et al. 2016). Unconventional resources for
REEs often have low concentrations. Of particular relevance a survey of the
unconventional resources of acid mine drainage (AMD), and the precipitate
formed from the neutralization of acid mine drainage (AMDp) found total rare
earth element (TREE) concentrations as low as 8 ug/L and 40 g/ton respectively
(Vass, Noble, and Ziemkiewicz 2019). For comparison, the more conventional
carbonatite bastnaesite found at the Mountain Pass mine in California has a
TREE content of approximately 7.98% by mass (Hellman and Duncan 2014).

Processes in development for unconventional REE resources are a textbook
example of demand leading to technology which reduces the mineralogical barrier.
The projects which motivated the methods presented in this dissertation are
the recovery of REEs from acid mine drainage (AMD) and acid mine drainage
precipitate (AMDp). Processing AMD and AMDp for REE recovery requires
an accounting of large amounts of variability. Such a process would have to
take into account the variability in elemental concentrations between regions,
between sites (Saber 2018), and between seasons. There is even the potential
for individual weather events to effect concentrations found within an individual
AMD source. Accounting for such a variable feedstock is paramount for analysis
of what process methodologies are environmentally, technically, and economically
feasible.

The basic flow for the process used in concentrating REEs from AMD and
producing a finished REE product is shown in Figure 1.1 (Ziemkiewicz, Noble,
and Vass U.S. Patent 10 954 582, Feb. 19, 2020). First a pre-concentrate is
precipitated at an AMD site. This pre-concentrate is then shipped to a central
facility where a leachate is made for solvent extraction processing and separation
of REEs from gangue metals. After downstream refining of intermediate REE
products produced from SX, a finished REE concentrate is produced which can
be used in manufacturing.

For the steps in Figure 1.1, there is the potential for variability in initial stages
to cascade through the process and effect overall technical, economic, and
environmental feasibility. Each stage in the process has a significant degree
of complexity. As part of process development, a bench scale SX pilot plant,
shown in Figure 1.2, has been built at West Virginia University (WVU) to learn
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Pre—Concentration

Shipping

Leaching

Solvent Extraction

Downstream Refining

Finished Products

Figure 1.1: Process flow chart for the concentration of REEs from acid mine
drainage.

Figure 1.2: Bench scale SX system at WVU.
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about the SX process for this particular application. In one test, the SX plant
was run for 43 hours with a constant feedstock and operational parameters.
Figure 1.3 and 1.4 show elemental concentrations, plotted hourly, from two
sampling locations for aqueous flows exiting the process.

Scrubbing AQ Output vs. Time, REEs Only

Element
Y
Eu
Gd

0.008
|

Concentration (g/L)
0.004

bhEbbttees

0.000
|

Time (hours)

Figure 1.3: Plot of REE concentrations found in AQ output of scrubbing stage

The purpose of the scrubbing stage in a REE SX operation is to remove impurities
from the organic phase uwithout removing REEs by mixing the organic phase
with a moderately acidic solution. A dialed-in scrubbing stage will therefore
improve the puritiy of a downstream REE concentrate. Therefore, the aqueous
REE concentrations of the scrubbing stage, shown in Figure 1.3, should ideally
be low. Notably, Figure 1.3 shows seemingly random perturbations of the low
REE concentrations, although feedstock and process parameters are constant.
The perturbations could be truly there, or could be related to analytical error.
The ability to take into account the variability of the low REE concentrations
observed exiting the scrubbing stage is necessary to ensure REEs are not being
lost as part of the process.

Figure 1.4 shows the concentrations of total rare earth elements (TREE), heavy
rare earth elements (HREE), and light rare earth elements (LREE; see §2.1)
exiting the stripping stage, sampled simultaneous to the concentrations in Figure
1.3. The stripping stage is meant to remove REEs from the organic phase using
a strong acid. The aqueous output of the stripping stage is sent for further
processing and elemental separations, and therefore should have a relatively
high concentration of REEs. The trend for the TREE concentrations in Figure
1.4 is unclear. Possibly, the process has not reached steady state after 43 hours
of run time. For a process that can take so long to reach steady state, a metric
for estimation of if the process is at steady state, and steady state is useful for
making process performance comparisons.

The variability, low concentrations, and complexity of the SX process for con-
centrating REEs from AMD necessitate uncertainty quantification in order to
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Figure 1.4: Plot of concentrations found in AQ output of stripping stage of a
bench scale SX plant.

better understand and optimize these processes. Bayesian statistical methods
leverage Bayes’ theorem (§2.2, Equation (2.1)) to provide uncertainty quantifi-
cation when inferring the parameters of a model, which can in turn provide
uncertainty quantification of a predictions. Surrogate modeling with Bayesian
models (§5, §6) can provide probabilistic methods for data collection, which
reduce the amount of real data required for the same level of accuracy, through
active learning.

1.3 Objectives

The goal of this dissertation is to demonstrate how utilizing Bayesian methods for
separation processes can provide a framework for improving engineering decisions
when process data is highly variable, scarce, and expensive. The motivating
problem of recovering REEs from the low and variable concentrations found
in AMD serves as a case study. The methods which follow can be applied to
general separation problems.

Explicit research objectives are stated below.

1. Explore the potential for Bayesian methods to be utilzed in process
engineering problems for the purposes of:
a. Uncertainty quantification.
b. Reduction in data requirements.
c. Improvements in modeling accuracy and model parameter estimation.
2. Adapt Bayesian statistical methodologies commonly used in other indus-
tries for separations engineering applications.
3. Derive novel statistical methods motivated by the unique problems en-
countered in REE recovery.
4. Present methods by:
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a. either testing on real data or illustrating how methods can be applied
using simulated data when real data is not available.

b. providing resources, including ample citations and code, so that
other process engineers can adapt the methods explored for their
Own purposes.

The dissertation first reviews relevant literature (§2), providing further details on
REEs and the motivating problem (§2.1), the solvent extraction (SX) methods
used to concentrate and separate REEs (§2.4), typical SX modeling techniques
(§2.4.1), process mass balancing (§2.3), Bayesian inference (§2.2), and Gaussian
Process (GP) surrogate methods (§2.5). The main body of work is broken up
into four manuscripts of work related to Bayesian methods for mass balancing
(§3), Bayesian estimation of steady state and steady state conditions (§4),
Bayesian optimization of an unknown process (§5), and Bayesian calibration of
a simulated process to provide predictions of a real process (§6). Concluding
remarks (§3.6) summarize the methods presented and their implications for
process analysis, as well as propose future work in the area of Bayesian Methods
for separation processes.



Chapter 2

Literature Review

2.1 Rare Earth Elements

Rare Earth Elements (REEs) include elements from the lanthanide series,
Yttrium, and Scandium (Gosen et al. 2014). Chemical symbol, atomic number,
and crustal abundance is shown in Table 2.1. REEs are grouped into heavy
and light categories based on their chemical properties. The term Rare Earth
Elements is somewhat misleading, as many REEs are found in similar abundance
as common metals such as copper and lead (Gosen et al. 2014), but are less
often found at high concentrations (USGS 2021).

Uses for REEs include making glass, lighting, metallurgy, catalysts, batteries,
ceramics, and magnets (Goonan 2011). A significant portion of REE usage is in
high growth green technologies, such as battery alloys and magnets, for which
usage grows faster than the economy (Goonan 2011; Balaram 2019).

Rare earth elements are listed as critical minerals, minerals which have a supply
risk and are economically important, by the United States (Nassar and Fortier
2021), Canadian (Canada 2021), Australian (Skirrow et al. 2013), and European
Union (The European Commission 2020) governments. The United States has
approximately a 100% import reliance for REEs from China, Estonia, Japan,
and Malaysia (USGS 2021). China governs the REE marketplace with a known
production of greater than 50% of global production and 37% of global reserve
estimates (USGS 2021). China has even further dominance over REE processing,
accounting for almost 90% of the global supply of REEs processed (IEA 2021).
Comparatively, the US accounts for approximately 15% of global production
and 1.2% of global reserve estimates (USGS 2021).

Finding additional REE resources is critical to economic growth and shifting
towards more sustainable technologies. In the search for additional REE
resources, previously unconsidered low grade feed stocks are being explored for
process feasibility and economic viability. Recent advances include recovering
REEs from coal and coal byproducts (Honaker et al. 2017; Q. Huang et al.

7
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Table 2.1: Rare earth elements and their crustal abundance (Lide 2004).

Element Symbol  Atomic Number Crustal Abundance (ppm)
Scandium Sc 21 22.00
Light REEs
Lanthanum La 57 39.00
Cerium Ce 58 66.50
Praseodymium Pr 59 9.20
Neodymium Nd 60 41.50
Samarium Sm 62 7.05
Europium Eu 63 2.00
Galodinium Gd 64 6.20
Heavy REEs
Terbium Tb 65 1.20
Dysprosium Dy 66 5.20
Holmium Ho 67 1.30
Erbium Er 68 3.50
Thulium Tm 69 0.52
Ytterbium Yb 70 3.20
Lutetium Lu 71 0.80
Yttrium Yb 39 33.00

2018), coal mine drainage (Ziemkiewicz et al. 2016), and coal mine drainage
treatment products (Vass, Noble, and Ziemkiewicz 2019).

REEs are typically separated from one another using solvent extraction (§2.4),
and the separation of individual REEs is regarded as one of the more difficult
types of separations in hydrometallurgy (J. Zhang, Zhao, and Schreiner 2016).
The difficulty and high dimensionality of separating REEs concentrated from a
low grade feedstock necessitates improvements in process modeling, experimental
design, and process data analysis.

2.2 Bayesian Inference

Many popular statistical methods rely on asymptotic statistical theory including
generation of point estimates for non-normally distributed independent and
identically distributed random variables, confidence intervals, and calculation
of p-values (DasGupta 2008). For a sample of size n, {Y7,Ys,...,Y,}, form a
population, as n — oo the mean of the sample one would observe Y = % YrYiis
asymptotically normally distributed, and confidence intervals can be constructed.
Relying on the asymptotic normality assumption can be problematic for a small
n sample size Hoff (2009).

Borrowing an example from Hoff (2009), multiple coin flips can be modeled
using the binomial distribution (})p*(1 — p)"~*, where n is the number of coin
flips, k is the number of times the coin landed on heads, and p is the probability
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of heads. Through some quick math, we can see that the unbiased estimator
for pis p = % To build a confidence interval from the data, one could then use

the confidence interval p & /p(1 — p)/n. One can see that for large values of p
and small n parts of the interval lie outside of [0, 1]. Hoff (2009) further points
out the problem that if p = 0, the width of the confidence interval 0.

In recent years, there has been serious critique and reaction to how some of
these classical methods are used including, linking p-values to the scientific
reproducibility crisis (Nuzzo 2014), and a ban on using null-hypothesis testing
and confidence intervals by the journal Basic and Applied Social Psychology
because the editors felt these methods were used to support shoddy research
(Trafimow and Marks 2015).

One alternative to frequentest methods is Bayesian methods. The cornerstone
of Bayesian statistical inference is Bayes’ rule, shown in Equation (2.1).

p(yl0)p(0)

p(ly) = o)

(2.1)

With y being considered as data, and 6 being a set of parameters in a statistical
model, line 1 of Equation (2.1) reads as the probability of theta, given the data,
is equal to the probability of observing the data, given the value(s) of theta times
the probability of theta, divided by the probability of observing the data. p(y) is
a constant, so often Bayes rule is stated as p(f|y) « p(y|0)p(@). Proportionality
is often all that is necessary for parameter inference.

Using Bayes’ rule a posterior distribution for model parameters p(8|y) is inferred
from the likelihood of observing the data p(y|f) and a prior distribution on
the model parameters p(f). The subjective choice of a prior distribution is
a common critique of Bayesian inference (Gelman 2008). However, for many
applications noninformative prior distributions are chosen (Yang and Berger
1996). Conjugate prior distributions, where the prior and the posterior have the
same form, are chosen for analytical purposes and can be adjusted to reduce
influence over the posterior. Other prior distributions are chosen for objective
reasons, such as choosing a truncated normal distribution with a lower bound
of 0 to model a mass flow rate (Koermer and Noble 2021). Empirical Bayes is
when the data informs the prior distribution, and some discussion on the topic
can be found in (Kass and Steffey 1989).

One benefit of Bayesian inference is the full quantification of uncertainty for
model parameters, instead of point estimates. Bayesian inference often takes
advantage of statistical simulation and Markov Chain Monte Carlo (MCMC)
methods to draw samples from a posterior distribution (Hoff 2009; Robert
and Casella 2013). A Gibbs sampler iterates over draws from the posterior
distribution of each model parameter, conditioned on the data and values
of other model parameters (p(61]62,Y) and p(62|01,Y")), to approximate the
marginal distribution of each model parameter (p(6;|Y) and p(62|Y)) (Gelfand
et al. 1990; Casella and George 1992).
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Bayesian inference can be used for model parameters where there is no clear
method for estimation through non-Bayesian methods (Hoff 2009). In the event
that a posterior distribution of a model parameter does not have a known
distributional form, algorithms such as Metropolis-Hastings (Hastings 1970) or
a slice sampler (Neal 2003) can be used.

For a linear model of the form Y = X3+ ¢, where Y and [ are vectors and X is
a matrix, Bayesian inference allows for the predictors represented in the columns
of X to be chosen as significant probabilisticaly (Mitchell and Beauchamp 1988;
George and McCulloch 1993), and predictions can be made using all models
considered weighted by their model probability (i.e., Fernandez, Ley, and Steel
2001).

Similar to a hypothesis test, the ratio p(y|M;i)/p(y|M2) known as a Bayes
Factor can be used to directly compare two models M; and My by comparing
how well each model explains the data (Jeffreys 1935). Bayes factors can be
used to give evidence of a null hypothesis, differing from how p-values should be
used (Kass and Raftery 1995). Finding p(y|M) can require solving intractable
integrals, one method for approximating p(y| M) using the output of a Gibbs
sampler can be found in Chib (1995). Model selection procedures can aid
engineers in decision making regarding plant design and operation. For more
on Bayesian analysis and Decision theory see Berger (2013).

The popularity of machine learning has promoted the popularity of Bayesian
inference. Bayesian inferences has applications in evolutionary biology (Huelsen-
beck et al. 2001); particle physics (Feroz, Hobson, and Bridges 2009), cosmology
(Feroz, Hobson, and Bridges 2009; Trotta 2008), and gravitational wave astron-
omy (Ashton et al. 2019); and in estimating model parameters in stochastic
chemical kinetic models for biological systems (A. Gupta and Rawlings 2014).

2.3 Mass Balancing

Mass balancing, or data reconciliation, in mineral processing systems estimates
true average sample values from data under the constraints of mass sometimes
energy conservation (Wills 2006; Romagnoli and Sanchez 1999). For a process
at steady state, the Feed (F') mass into a system equals the Concentrate (C)
mass plus the Tailings (T") mass. This is also true for individual components,
which can be calculated as the mass of a process stream times the mass fraction
(f, ¢, t) of a component (ie., F'f). Reconciled data has many uses including plant
monitoring and testing (Nel, Martin, and Rabbe-Sgs 2004), process control (Bai,
Thibault, and McLean 2006), and simulation calibration (Bai, Thibault, and
McLean 2006).

BILMAT is a popular data reconciliation algorithm designed to work with data
in discrete time intervals (Makni and Hodouin 1994). The user manually tunes
a backward horizon to use when reconciling the results over time. Bilmat can
produce poor results when the time window chosen is large.

In Makni and Hodouin (1994), only diagonal covariance matrices were considered
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in the parameter estimation procedure. Good estimates of the covariance in the
errors between sample components and samples is critical for good estimates
of true masses (Romagnoli and Sanchez 1999; Vasebi, Poulin, and Hodouin
2014). Maximum likelihood estimation (MLE) methods have been developed to
estimate covariance of the error between samples and sample components (J.
Chen, Bandoni, and Romagnoli 1997; Keller, Zasadzinski, and Darouach 1992),
however these methods require large data sets, and can have computational
convergence problems (Darouach et al. 1990; Keller, Zasadzinski, and Darouach
1992).

A classical mass balance which assumes Gaussian error can provide poor es-
timates of true sample grade (Koermer and Noble 2021). The problem is
metaphorically equivalent to putting a square peg in a round hole. An un-
bounded Gaussian distribution models random variables which can range from
—o00 to oo, while the grade expressed as a percentage ranges from 0% to 100%.
Gaussian error is inappropriate for a low or high grade sample, especially when
there is high variability. The use of Gaussian error in mass balances has been
problematic for low grade material flows in the platinum industry. The sam-
pling theory of particulate material (Pitard 1993; Lyman 2020) recognizes this
problem and suggests modeling low grade samples using a Poisson distribution.

Bayesian methods for mass balancing data in mineral and chemical processing
systems is notably sparse. Some models using Bayesian logic and methods
for gross error detection entered the literature decades ago with mixed results
(Tamhane, Iordache, and Mah 1988; Romagnoli and Sanchez 1999). More
recently, Bayesian methods for data reconciliation when there is no data for
some of the sampling locations has been published with successful results (Cencic
and Frithwirth 2015).

2.4 Solvent Extraction

Solvent Extraction (SX), also known as liquid-liquid extraction, is a means of
separating components using the solubility characteristics of components of
interest between two immiscible liquid phases (Lo, Baird, and Hanson 1983; J.
Zhang, Zhao, and Schreiner 2016). Typically one imiscible liquid is an aqueous,
water based, solution, while another is an organic liquid similar to kerosene. For
example, in nickel and cobalt recovery an ore can be leached using sulfuric acid
or ammonia aqueous solution, which is mixed with an organic phase (0il) made
of 10% Dinonylnaphthylsulfonic acid and kerosene (Lo, Baird, and Hanson 1983).
The Dinonylnaphthylsulfonic acid is an extractant, chosen for it’s properties for
selectively extracting cobalt and nickel from the aqueous phase. Both of these
phases can be mixed to create an emulsion, increasing the surface area between
the two phases. The increase of interfacial surface area allows for greater rate
of diffusion across the boundary. After agitation stops the imiscible liquids
separate, similar to how oil and vinegar separate in salad dressing.

For the nickel/cobalt process, the organic phase can then be mixed with an
aqueous hydrochloric acid solution to strip the cobalt and nickel from the
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Table 2.2: Survey of methods which can be used to model solvent extraction

processes.

Method Theoretical Basis

Model Deficency

Relevant Works

Distribution Ratios Nernsts Distribution Law

McCabe-Thiele Diagram ~ Nernsts Distribution Law
Exli};encal distribution Nernsts Distribution Law

Separation Factors Nernsts Distribution Law

Law of Mass Action

Kinetic Modeling

Stochastic Modeling Markov property

Assumes activity coefficients
are independent of solute concentration.

Graphical method not generalizable
to multiple elements and condition sets.

Requires selection of the form of f.

Assumption of constant separation factors.

Necessary to assume chemical
reaction steps.

Necessary to assume elementary chemical

J. Zhang, Zhao, and Schreiner (2016)
C. K. Gupta and Krishnamurthy (1992)

McCabe and Thiele (1925)

C. Zhang, Zhang, and Schreiner (1995)
C. K. Gupta and Krishnamurthy (1992)
Larochelle and Kasaini (2016)

Espenson (1995)
Arnaut and Burrows (2006)
Temkin, Zeigarnik, and Bonchev (1996)

McQuarrie (1967)

reaction steps. Analytically intensive.

organic phase into an aqueous solution. This aqueous solution is then mixed
with an organic phase containing the extractant Triisooctylamine dissolved in
the diluant toluene. Cobalt is stripped from the organic phase by mixing with
water and can be precipitated through further processing of the aqueous solution,
including electrolysis (Lo, Baird, and Hanson 1983). In this way, elements can
be targeted, separated, and concentrated based on solubility properties.

Processes for concentrating REEs often use organophosphorus acids for extrac-
tants (C. K. Gupta and Krishnamurthy 1992). As an element moves between
the aqueous and organic phases, a chemical reaction occurs, possibly the one
later listed as Equation (2.6).

2.4.1 Solvent Extraction Modeling

There are a variety of methods for modeling SX processes. Some methods model
equilibrium conditions, while others can be used to model the reaction over time.
A survey of methods is tabulated in Table 2.2. Often, there is a trade off between
the severity of the assumptions made and model complexity. Methods based
on Nernsts Distribution Law are the simplest, but assume constant behavior
over a variety of concentrations. Kinetic methods require a scientist to assume
a set of elementary reaction steps which are not possible to know (Espenson
1995). Stochastic methods have the potential to be overkill and more useful for
systems on the microscale. Further discussions on the details of these methods
are in the proceeding sections.

A primary factor for selecting a model is related to the reason for modeling
in the first place. For example, if one wanted to infer kinetic constants, they
would have to choose a kinetic model. However, along the lines of all models
are wrong, but some are useful (Box 1976), no matter what model is selected,
there will always be some bias (skip ahead to §2.5.3) between observations and
model predictions. If the purpose of modeling is for prediction, selecting which
model to use can be difficult.

Any phenomenological model has to be fit to data. An experimental procedure
where data is collected for SX equilibrium modeling is dependent on the purpose
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and required precision of the model in development. One may want to control
interfacial surface area so precisely, that the moving drops technique, where a
single droplet of one phase is allowed to move through a vertical tube of another
phase is employed (Roberto Danesi, Chiarizia, and Coleman 1980).

Often, when collecting data, a volume of an aqueous liquid and organic liquid
are placed into a vessel at various organic to aqueous volumetric ratios (O:A),
and agitated until it is assumed the mixture is at an equilibrium state J. Zhang,
Zhao, and Schreiner (2016). The two phases are allowed to disengage and
separated for analysis. Such a test is referred to as a shake test throughout this
article. Solvent extraction data can also be gathered as observations of a full
SX process. As long as the data required for the model is collected, such data
can be useful for informing model parameters.

2.4.1.1 Distribution Ratios

The use of distribution ratios for modeling the equilibrium concentrations of
a solute in two immiscible liquid phases is common in liquid-liquid extraction
literature for rare earth elements (J. Zhang, Zhao, and Schreiner 2016; C. K.
Gupta and Krishnamurthy 1992). Lyon, Utgikar, and Greenhalgh (2017) uses
distribution ratios within a system of differential equations to model cascades
of mixer-settlers.

J. Zhang, Zhao, and Schreiner (2016) define a distribution ratio, as shown in
Equation (2.2), using Nernst’s distribution law. The distribution ratio, Ky,
provides the ratio of concentrations of solute M in solvents A and B. J. Zhang,
Zhao, and Schreiner (2016) notes that because distribution ratios are valid for
a constant pressure, temperature, and chemical potential for immescible pure
solvents the “distribution ratio is not the distribution constant”.

[Ma)]

K, =
(M)

(2.2)

J. Zhang, Zhao, and Schreiner (2016) then use chemical potential to derive
Equation (2.3), showing that the distribution ratio K7 is only a constant if the
activity coefficients, -y, are independent of solute concentration.

K5 =Ky 2A (2.3)
B

Assuming the independence of activity coefficients from solute concentration
is questionable, and assuming a constant distribution ratio can lead to serious
errors when developing liquid-liquid extraction processes (J. Zhang, Zhao, and
Schreiner 2016). Since K; dependent on a variety of conditions, it is possible
to measure K, for specified conditions, such as temperature and impurity
concentrations, to predict SX behavior.

A well known method for estimating how K, changes with varying parameters
is the isotherm, or McCabe-Thiele, method (McCabe and Thiele 1925). Using
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this graphical method, one can estimate K, for varying concentrations of the
solute in one of the solvent phases, using the relationship [Mq)] = f[M(,)]. An
example isotherm of the same form as a figure in J. Zhang, Zhao, and Schreiner
(2016) is shown in Figure 2.1.

f[Ma]

M)l

M)

Figure 2.1: Example McCabe-Thiele isotherm, similar to example in (J. Zhang,
Zhao, and Schreiner 2016).

Unfortunately estimating the function f, as f , for concentrations of p elements
in the aqueous phase to jointly predict the concentration of p elements in the
organic phase cannot be completed graphically when p > 1. Other methods are
necessary for taking interactions between concentrations into account.

C. Zhang, Zhang, and Schreiner (1995) fit an equation, of the form shown in
Equation (2.4), to produce f . This model is able to make predictions of the
concentration of M in the organic phase, given the equilibrium concentration
of M in the aqueous phase and hydrogen ion concentration, by estimating
fitting parameters aj, ..., ag from laboratory equilibrium data. This particular
approach allows f to be written down as an equation, so calculation of Ky at
various conditions does not rely on a hand drawn sketch of f when using a
graphical method.

[Mo)] = on [M] e Mol plesbastitaatt®) (2.4)

While fitting an empirical equation to data improves on the issues related to
sketching a curve by hand to find f for the graphical isotherm method, fitting
an empirical equation for the equilibrium concentration of a single element does
not take into account interactions between elements present.

A simple method for handling the p > 1 case is using separation factors (C. K.
Gupta and Krishnamurthy 1992), a ratio of distribution ratios between two
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elements as specified as in Equation (2.5).

Ky

BM,N = KiN (2~5)

Typically separation factors are compared to determine if a separation is possible.
In the case that K4 =~ 1 for a set of conditions, a separation between elements
will be difficult or impossible. Larochelle and Kasaini (2016) introduced an
iterative method of predicting distribution ratios and equilibrium concentrations,
by specifying a constant distribution ratio of Nd and predicting distribution
ratios for other elements using separation factors relative to Nd. Even with
this simplification removing some information, Larochelle and Kasaini (2016)
reported good results between results from a simulation and observations from
a process plant at steady state.

Pavon et al. (2019) introduced a method of simultaneously modeling cerium,
europium, and yttrium concentrations using chemical equilibrium relationships.
The model was calibrated using experimental data

2.4.1.2 Kinetic Models

When an element moves from one liquid phase to another, a chemical reaction
takes place. For an organophosphorus acid in the organic phase, reacting with
a Rare Earth Element (REE) in the aqueous phase, the reaction can be written
as in Equation (2.6) (C. K. Gupta and Krishnamurthy 1992).

[RE*Jag + [3(HA)2Jorg — [RE(HA)sJorg + 3[Hag (2.6)

Kinetic models in chemistry are useful for understanding the rates of chemical
reactions (Espenson 1995), and can be used to study the SX equilibria under
investigation. A chemical reaction can be written as shown in Equation (2.6)
can be rewritten in the general form shown in Equation (2.7), representing
chemical species with an uppercase letter, and taking into account stoichiometry
with a lowercase letter.

aA+bB — cC+dD (2.7)

The rate law for the reaction in (2.7) can be written as v = k[A]%[B]® (Arnaut
and Burrows 2006). The rate constant k is dependent on reaction medium,
pressure, and temperature, but independent of concentrations of A and B. Given
the reaction and stoichiometric relationship in Equation (2.7), the differential
equation relationships in Equation (2.8) can be written (Espenson 1995).

_1dl4] 1dB] _1d[C] 1dD] e
VEToat T b dt ear —da - lArE 28)
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Where k; is a rate constant and [X] is the concentration in mol/L. A reversible
reaction is shown in Equation (2.9).

k1
aA+bB k:‘ cD+dD (2.9)

-1

The rate law for Equation (2.9) can be written as

v =k [A]”[B]® — k_1[C)°[D]* = vy —v_y (2.10)

When the system is at equilibrium, the reaction rates v1 and v_; are equal, and
the equilibrium constant K., can be derived (Arnaut and Burrows 2006).

kl [C}gq[D]gq
() = e = =

eq eq
The differential equation for the concentration [A] could be written as a rela-
tionship between the forward and reverse reactions as shown below.

YA (eriD) - mlAf By (212)

However Equation (2.12) is a notable mis-specification as it assumes the si-
multaneous collision of more than three molecules. Firstly, the probability of
more than three particles colliding simultaneously approaches zero (Arnaut and
Burrows 2006). On the macro scale, Equation (2.9) is a valid representation
of the reaction, but on the micro scale it is necessary to work with elementary
reactions, where the order of each reaction is two or less. The order of a reaction
is defined as the sum of the stochiometric coefficients of the reactants for the
reaction’s rate law (Arnaut and Burrows 2006). A clear example of why it is
advantageous to model equilibrium using elementary reactions is shown on page
102 of Temkin, Zeigarnik, and Bonchev (1996).

Reaction order is determined experimentally, and the reaction mechanism
is not possible to prove, but can be disproven through experimental results
(Espenson 1995). For some reactions, data can suggest a fractional reaction
order (Espenson 1995), typically for chain reactions such as a reaction in the
form of A+nB < AB,, (Temkin, Zeigarnik, and Bonchev 1996). A reaction can
also be of zero order with respect to a component, i.e. k[A]°[B] = k[B], implying
the rate is independent of the concentration of A (Espenson 1995). For an
example where the determination of a zero order reaction is from experimental
data, the equilibrium model structure itself would be inferred from the data.

In breaking down a reaction into its elementary reactions, one would account
for all intermediate chemical complexes formed. Instead of using experimentally
determined reaction orders for a model, the law of mass action can be used
to derive differential equations for a system of elementary reactions (Horn
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and Jackson 1972). The law of mass action is shown by Equation (2.13) and
Equation (2.14), taken from L. Chen et al. (2010). Equation (2.13) specifies
a single reaction with reactants which could be R;, Ra, ..., R;,, which have
stoichiometric coefficients r1,7s,...,7,, and products labeled similarly from
a set of size n. k is the rate constant of the reaction. The reaction rate of
Equation (2.13) is given in Equation (2.14) as a differential of a reactant or
product concentration with respect to time. A system of differential equations
for multiple reactions and all reactants can be derived by summing over all
reaction rates found using Equation (2.14).

riRy+reRe + -+ Ry ﬁ>271]31 +p2Po+ -+ paby (2.13)
1d[R;] 1 d[P]] -

Rt i Rl sl £ R T 2.14

e e a1 (2.14)

The law of mass action provides a mechanism for modeling equilibrium concen-
trations, given the elementary reactions. A critique of using the law of mass
action for modeling chemical equilibrium is that the law has been shown to
only be approximately valid, is deterministic, and is not well suited for small
systems (McQuarrie 1967).

2.4.2 Stochastic Methods

McQuarrie (1967) provides methods for stochastic kinetic modeling for first
order reactions using both discrete (DTMC) and continuous (CTMC) time
Markov chains. McQuarrie (1967) argued that there is some evidence for a
Markovian basis for chemical reactions and that the law of mass action is an
approximation and does not generalize well to smaller systems.

k1
For the bimolecular reversible reaction A + B T C+ D a CTMC system

2
can be solved analytically, with solutions and procedures for model parameter
interpretation for the system given in Darvey, Ninham, and Staff (1966). More
on CTMCs can be found in Anderson (2012).

2.5 Gaussian Processes

2.5.1 Gaussian Process Models

Mineral process engineers are frequently employed to technically or economically
model a process to assess feasibility, predict revenue and costs, and suggest
efficiency improvements. Process models are derived based on a mixture of
literature and data observed in a laboratory or processing plant.

In general terms, any model will aim to predict an outcome given a set of
conditions. Equation (2.15) is an example of how an outcome or observation, y,
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can be modeled as a function f, with conditions x1, 2,3, ...,%, = X, plus
some error .

y=f(X)+e (2.15)

Sometimes f(X) can be written down, because the mechanisms leading to the
outcome are well understood. Often, phenomena are not fully understood.

Response surface methodology may be chosen to estimate f(X) when the
relationship between a set of conditions and an outcome are unknown (Box
and Draper 2007). An estimate of f(X) can be written as f(X) When using
response surface methodology a polynomial can be used to approximate f(X)
for a sufficiently small range for all x1,xs, z3, ..., Ty, and aid in gradient based
optimization (Box and Draper 2007). There are various experimental designs
which can be employed to better estimate polynomial coefficients with less data
(Box and Draper 2007).

Response surface methods have been used in mining engineering applications
to model the removal of uranium from mine water (Nariyan, Sillanp#é, and
Wolkersdorfer 2018), aid in the removal of lead from gold tailings (Demir and
Derun 2019), and for the removal of iron and manganese from acid mine drainage
(Nuniez-Goémez et al. 2020). Response surface methods are useful for mineral
processing engineers.

However, response surface methodology is not the only option for estimating
f (X), and does have some disadvantages compared to other methods. Gaussian
Process (GP) regression Gramacy (2020), is an alternate to response surface
methodology which has been utilized in predicting the output of computationally
intensive computer simulations (T. J. Santner et al. 2003), robotic controls
(Deisenroth, Fox, and Rasmussen 2013), and spatial statistics (Gelfand and
Schliep 2016).

A Gaussian process has similarities to the Kriging (Matheron 1963) techniques
used in resource estimation. After drilling and analysis of boreholes, borehole
data can be weighted using methods including the area of influence method,
polygon method, extended area method, and inverse distance weighting to
estimate ore body properties (Hartman and Mutmansky 2002). For inverse
distance weighting methods, as the distance between a prediction location and
a data point increases, the data point has less influence over the prediction. An
illustration is shown in Figure 2.2.

A GP uses a function, often distance based, to weight data for making pre-
dictions at a location Gramacy (2020). While borehole data can be two or
three dimensional, Euclidean distance calculations are generalizable to higher

dimension by taking Zle(ai —b;)? (Tabak 2014), where d is the number of
dimensions.

The ability to calculate distance in higher dimension means that a GP is not
limited to modeling two conditions, such as longitude and latitude. For a
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Figure 2.2: Example of how distance between a prediction location and data
can be used to weight data for prediction.

mineral process this could mean modeling flotation time and various reagent
additions simultaneously, with each unique set of test conditions representing a
different set of coordinates or test location.

Simply weighting the importance of each point using distance can be problematic.
For example, the effect of two reagents can be drastically different. A small
change in reagent one may only produce a small difference in the outcome, which
would imply close by as well as far away data points are useful for prediction.
However, if a small change in reagent two produces a large difference in the
outcome, more distant points along the reagent two concentration dimension
are less influential for prediction.

A common choice for the function which weights the points, the GP correlation
function between two locations, is the exponentiated negative squared distance
between the two points, shown in (2.16) (Rasmussen 2003; Gramacy 2020).

m

2 N _ N (xl — m;)Q
o°(z,a") = exp Z T (2.16)

i=1

The summation in (2.16) gives the squared distance between two locations
and z’. The distance in each dimension ¢ = 1,...,m is rescaled by 6;, allowing
the distance along each dimension to be weighted differently.

For a seperable, deterministic, GP 64,...,0,, are the fitting parameters in
the model. o2(x,z’), in Equation (2.16), can be thought of as the correlation
between responses at locations x and x’. Inspecting the GP model structure in
(2.17) jointly illustrates how distance between two locations is used to estimate
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correlation between these locations.

1 _
fly) = —— |8 22T ETY (2.17)
(2nT)2

Equation (2.17) is in the form of a multivariate normal distribution. In this
case the mean of the distribution is 0 for all elements y1, ¥, ...yn in vector Y.
Each y; is an observation at a corresponding location x;, and one can think of
y; = y(z;). ¥ is a covariance matrix, holding information about the correlation
between two observations y(x) and y(z'). The a,b entry of Sigma is equal to
0%(24,2p) in Equation (2.16). 7 is a scaling parameter, on which details of the
importance can be found in (Gramacy 2020).

Given the a covariance function, such as the exponential function in Equation
(2.16), and some of the properties of the multivariate normal distribution, it is
possible to use conditional probability identities to derive equations for mean
predictive values as well as predictive variance at a given location = (Gramacy
2020).

2.5.2 Sequential Design

When traveling and using a new shower, there is uncertainty as to how many
radians to turn the shower knob for maximal comfort. Often one will start off
and turn the shower on a little (small ), realize the water is too cold, then
turn the knob up (large ) and recognize the water is too hot. Then one can
use the temperatures they have experienced to estimate where a good knob
position may be. The shower knob can be turned to a third location and the
temperature is ok, but it is a little cold, and one can tweak the knob location to
gain some improved comfort level over the previously experienced temperatures.
The knob position is then further tweaked sequentially changing the position to
where one would expect to find the most improvement over the best previously
observed temperature given the previously collected data.

Such a process is in Figure 2.3, illustrating how far and the sequence one may
use when finding their optimal shower temperature. Importantly, when we
search for this optimum, we do not use a known function for shower comfort.

Such a series of ezperiments in the pursuit of finding the best shower temperature
can be considered a sequential experimental design, where experiments run
are not fixed prior to the start of experimentation (Robbins 1952). Figure
2.3 shows a sequential design for optimization. While it would be believable
that a human would make the sequential choices shown in Figure 2.3, the
sequence was sequentially run using the Expected Improvement (EI) sequential
design criteria (Schonlau 1997) and some functions for implementing Bayesian
Gaussian Processes with the tgp package (Gramacy and Taddy 2009) in R for
Efficient Global Optimization (EGO) (Jones, Schonlau, and Welch 1998).

Optimization using EI has advantages over gradient based methods, which
require the experimenter to repeatedly approximate derivatives of the unknown,
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Figure 2.3: Learning the right temperature for a novel shower is an example of
sequentially searching for the optimum of an unknown function.

black boz, function using finite differences (Box and Draper 2007), requiring a
large number of experiments to find and test the optimum. From the simulation
surrogate literature, such methods can make computation time for optimization
infeasible (Gramacy 2020). Imagine turning the shower on, finding it too
hot, and then turning the knob to make the water colder, then hotter, and
estimating the first derivative before proceeding! Further issues with gradient
based sequential design optimization methods occur when a response surface is
multi-modal, as gradient based optimization can converge to the local, and not
necessarily global, optima (Gramacy 2020).

To find the point where one may find the greatest expected improvement at a
test location x, given the best observed value along with the rest of the data,
first one has to define EI mathematically. Improvement for maximization can
be defined as I(z) = max{0,Y (z) — N} where Y (x) = f(x) for a function
mapping x — Y and f2_ . is the best observed value for the previously obtained

N data points (Schonlau 1997). The expectation, or expected value, is the
mean value for a random variable, noted as E[Y] = f; Y f(Y)dY for the random
variable Y € [a,b] which has a probability density function of f(Y). The
expected improvement at location x, and the analytical solution for the integral
if Y(x) is modeled as a GP, is shown in Equation (2.18) (Schonlau 1997).

E[I(z)] = " (Y (@) = fraa)9(Y (2))dY (z)
_ ) — N /J’N(x) _fnjgaa: o (z ILLN(x) _fnjgaa:
- (MN( ) mam)(b ( (TN(I)Z) > + n( )(b ( (TN(IZ’) )

(2.18)



22— Chapter 2. Literature Review

In Equation (2.18) un(x) and on(X) are the predictive mean and standard
deviation of Y (z). ¢ and ® are the standard normal probability density and
cumulative density functions. Because with a GP, there are analytic solutions
for predictive mean and standard deviation, a GP can easily be used for efficient
global optimization of a black box function. At each step, in practice, a candidate
set of z is generated, predictive means and standard deviations are calculated
using a GP at each x, EI is then calculated at each x, and the x with the largest
expected improvement is chosen for testing. To generate a candidate set z,
often a Latin Hypercube Sample (McKay, Beckman, and Conover 1979) is used
(Jones, Schonlau, and Welch 1998).

Sequential design has advantages not only in optimization, but in experimental
design for predictive modeling. One can sequentially choose to test the experi-
mental location with the highest predictive variance to obtain better estimates
of the model parameters (MacKay 1992). Such a design criteria, when used
with GPs, is called Active Learning McKay (ALM) (Seo et al. 2000).

An alternative is the Active Learning Cohn (ALC) criteria (Seo et al. 2000),
which seeks to find the testing location which maximizes the average reduction
in predictive variance over the design space through the additional experiment.
For a candidate set of x4 testing locations an integral over the test space
can be approximated at each candidate in the set, selecting the the best one.
For noisy experiments, the value for variance at the location can be removed
in calculation so that only uncertainty of the GP fit is reduced, such as in the
IMSPE criteria implemented in Binois, Gramacy, and Ludkovski (2018).

2.5.3 Model Calibration

In this context, model calibration refers to parameter estimation of an equilibrium
model described in §2.4.1, which could include distribution ratios, a system
of differential equations, or a stochastic model. Typically, when calibrating a
model with real data the relationship in Equation (2.19) is used in inference
(Gramacy 2020), where Y¥ represents observed field data, % represents the
real process with noise removed, and e represents normally distributed error.

Y (x) = yR(z) +e (2.19)

If y* is a system of differential equations modeling SX equilibria, it would have
a set of tuning parameters u, which would include chemical kinetics constants.
Varying u in y®(z,u) would allow u to be varied for calibration.

There are multiple ways to use a GP in a calibration context. A method, sug-
gested Kennedy and O’Hagan (Kennedy and O’Hagan 2001), restates Equation
(2.19) as Equation (2.20). y(z) in Equation (2.19) is replaced with a model
dependent on x and u along with a bias function dependent only on x, noted
as yM(x,u) and b(z) respectively in Equation (2.20).

YE(x) = yM(z,u) +b(z) + ¢ (2.20)
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Equation (2.20) can be further reworked to provide a vector of residuals modeled
by the bias for a np set of number of field data points and a given value of u
(Higdon et al. 2004).

VP = b(any) = Y (@ny) — ™ (np, ) (2.21)

From Equation (2.21) a model for inference for u can take different forms
depending on how expensive evaluations of the computer simulations providing
y™ (2., u). If the simulation is cheap to evaluate, likelihood on Yf Lu can be
maximized directly (Higdon et al. 2004). If the simulation is expensive to
evaluate a GP can be fit to y™ based on a selection of model runs and details
for calibration are changed to account for uncertainty in 9. It is possible to
place a prior distribution on u in order to constrain the values, and inference
can be conducted via MLE or MCMC.

Kennedy and O’'Hagan’s original method is good for augmenting a simulator for
good field data predictions, but the simultaneous inference of simulator and GP
parameters leads to a high degree computational complexity (Gramacy 2020).

An update on the method, called modularization (Bayarri, Berger, and Liu
2009), fits a GP surrogate to a computer simulation independent of the field
data, with inputs of z,u. Next, u is calibrated by finding the setting of u which
maximizes the likelihood of the residuals between the field and model data.

2.5.4 Other GP Models
2.5.4.1 Multiple Outputs

GP models described previously assume a scalar output, meaning at location x
ay = f(z) is a single value. However, there are methods for producing vector
valued outputs, which could be advantageous for predicting concentrations of
multiple chemical elements simultaneously.

One method for producing multiple outputs at the same z location is augment
2 with u, a vector or matrix giving indication for a discrete input to f(x,u). If
u can indicate two discrete, or qualitative, factors, two different values can be
predicted at the same testing location z. P. Z. G. Qian, Wu, and Wu (2008)
provides a GP model structure and parameter estimation techniques for GP
models with both continuous quantitative and a binary qualitative factor. The
model essentially uses a latent variable which estimates the squared distance
between the two factors in one dimension.

Y. Zhang et al. (2020) expands upon the methods in P. Z. G. Qian, Wu, and
Wu (2008) by presenting a method for modeling a larger number of discrete
factors, using latent variables to place the factors in a higher dimensional space
for distance calculations. Authors suggest placing the latent variables in a
2D space for the advantages of allowing a more complex spatial relationship
then placing factors on a line, but without drastically increasing computational
complexity. For approximating integrals over an input space which contains
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both continuous and discrete variables, a sliced Latin Hypercube Sample can
be used (P. Z. Qian 2012).

Methods in Y. Zhang et al. (2020) allow for a GP model to be used if data is
not available for each discrete factor at each x. This would be advantageous if it
was necessary to obtain data for each discrete factor individually. However, with
chemical equilibrium experiments, ICP-MS data typically contains information
on all elements of interest simultaneously. With little to gain for implementation
of the model in Y. Zhang et al. (2020) for this application, the increase in the
number of latent variables does not make such a model the best choice.

Cokriging (Ver Hoef and Barry 1998) takes a different approach and allows for
vector valued output at a single input location. A covariance matrix between the
outputs is calculated in closed form, and estimation of other GP parameters are
similar to a scalar output GP. However, for some data generating mechanisms
Cokriging may be an unrealistic model (Gramacy 2020). It is expected that
there will be covariance between most of the elements in equilibrium. If the
Cokriging model is not realistic, coregionalization may provide the necessary
flexibility (Bourgault and Marcotte 1991).

2.5.4.2 Error Structure

When fitting a line to data, commonly variance in the response is assumed to
be a constant for any x. Constant variance is called homoscedasticity. A model
which allows for heteroskedasticity, allows for the variance to change along x.
One heteroskedastic GP model is stochastic kriging (Ankenman, Nelson, and
Staum 2008), which has good properties for separating signal from noise, but
requires a minimum number of replications at each testing location and makes
the inclusion of exploratory testing locations difficult. Treed Gaussian Processes
(Gramacy 2005) segment the input space and fit a GP to each segment allow for
heteroskedasticity but variance may not evolve smoothly as one would expect
with real data.

Binois, Gramacy, and Ludkovski (2018) published a model which fits a GP
to the variance parameter in a typical GP model, using latent variables to
estimate variance at tested locations which allow for variance predictions at
untested locations. The model in Binois, Gramacy, and Ludkovski (2018), and
implemented in Binois and Gramacy (2021b), allows for IMSPE sequential
design criteria.

2.5.4.3 Stationarity

While GPs may appear more flexible than linear regression, they are inflexible
in other respects. Stationarity in this context is the assumption that the way
points are weighted with regard to distance in each dimension is constant. If
dynamics change drastically in one area of the input space, this assumption
may be unrealistic.

Examples of nonstationary GP models include the selection of a subset of
neighboring data points for prediction (Emery 2009), treed GPs (Gramacy
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2005), and deep GPs (Sauer, Gramacy, and Higdon 2020).

2.5.5 GPs and Real Data

Gaussian Processes have been used on a wide array of real data outside of
geostatistics. Applications involving real data include successful autonomous
robot learning and control (Deisenroth, Fox, and Rasmussen 2013), accurate
modeling of the growth of microbial populations (Tonner et al. 2017), calibration
of mass and infrared spectroscopic tools (T. Chen, Morris, and Martin 2007),
and for the prediction of wastewater effluent streams (Hvala and Kocijan 2020).
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Chapter 3

The utility of Bayesian data
reconciliation for
separations

This chapter was accepted for publication in the international peer reviewed
journal Minerals Engineering. Citation details are provided below:

Koermer S, Noble A (2021). “The utility of Bayesian data reconciliation, for
separations.” Minerals Engineering, 169, 106837.

Abstract

Data reconciliation methods for separation processes typically rely on classical
statistical approaches to generate estimates of true mass flow rates from mea-
surements. Knowledge regarding the uncertainty of these estimates has value
in decision making, but is often not acquired. Bayesian approaches intrinsically
quantify uncertainty; however, literature for Bayesian data reconciliation of
separation processes is scarce. This publication outlines two Bayesian data
reconciliation models and provides details for how the models were implemented
for the BayesMassBal (V 1.0.0) software package written in R. To demonstrate
the advantages of this approach for data reconciliation, the models were first
applied to simulated data and then compared to a classical model through a
Monte Carlo experiment. In this example, the Bayesian models were found to
provide more accurate estimates of the simulated data, while also providing
quantitative information on the estimate uncertainty. To demonstrate the use
of the technique in a practical problem, the models were also applied to real
data collected from a pilot-scale rare earth solvent extraction process. This
publication provides a small window into how Bayesian methods can be used
for data reconciliation, but findings suggest Bayesian data reconciliation models
for separation processes have distinct advantages over classical alternatives.

27
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3.1 Introduction

The interpretation and utilization of raw plant data from mineral processing
operations are non-trivial tasks that requires both mathematical rigor and expert
judgment. In most cases, the raw assay data are initially used to complete a
steady-state flowsheet balance for all major constituents, such as total solids,
water, target mineral species, and gangue minerals. This balanced flowsheet
is in turn used to calculate metallurgical process performance indicators, such
as throughput, recovery, and rejection. In cases where redundant data have
been collected (e.g., the feed and both products of a simple separator have been
assayed), the flowsheet balance almost certainly lacks internal consistency, as
the steady-state mass balanced condition is not achieved for all components
simultaneously. Use of this poorly balanced data can lead to nonsensical
calculations of performance metrics and in turn lead to misguided or erroneous
decisions on process improvement.

Poor sampling, unreliable assay procedure, and random process variation can
be contributing factors to poorly balanced datasets, even in process operations
with tight controls on representative sampling and assays. To mitigate these
issues and produce an internally consistent dataset, engineers must employ a
data reconciliation (also known as mass balancing) technique to filter noise so a
consistent picture of the true behavior of the system can be obtained.

Data reconciliation leverages the conservation of mass and energy to aid in
separating true values from noise and variability (Wills 2006; Romagnoli and
Sanchez 1999). For a single node process at steady state, consisting of a feed
(F), a concentrate (C), and a tailings (T') stream, the mass entering a unit
operation must be equal for both the total mass (3.1), and the component mass
(3.2), as given by:

F=C+T (3.1)
Ff=Cc+Tt

Where f, ¢, and t are the grade of the feed, concentrate, and tailings respectively,
in fractional form. Commonly, a sum of weighted least squares criteria is used
to find the best point estimates for the true values of grade (Romagnoli and
Sanchez 1999).

There are many data reconciliation methods. For a given data set, some are
more useful than others. Model specification can influence the accuracy of
results. For example, BILMAT, a popular algorithm for data reconciliation in
mining applications, can handle time correlated data, but can produce poor
results when a too large time window is chosen (Makni and Hodouin 1994).
Similarly, specifying covariance structure is important. Estimation of the covari-
ance between measurement errors is crucial to trustworthy data reconciliation
(Romagnoli and Sanchez 1999). Vasebi, Poulin, and Hodouin (2014) showed
data reconciliation model covariance mis-specification produces sub optimal
estimates.
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Proper estimation of the covariance is important, but difficult. The publications
J. Chen, Bandoni, and Romagnoli (1997) and Keller, Zasadzinski, and Darouach
(1992), furnished and tested methods for estimation of a covariance matrix.
Each method is tested using 1,000 observations, a testament to the large data
sets required to produce good point estimates for each element of a covariance
matrix. Obtaining similarly large data sets is not always feasible. Furthermore,
some estimation procedures, such as maximum likelihood estimation (MLE), can
have computational and convergence problems (Darouach et al. 1990; Keller,
Zasadzinski, and Darouach 1992).

Regardless of the reconciliation method employed, the flow balance estimates
produced from a limited dataset will never be completely free from error. Esti-
mates produced from a model are dependent on the data observed, implying
that the variability present in the data will produce variability in the estimate
when different data sets from the same source are used. Nevertheless, the pre-
ponderance of uncertainty does not preclude the use of such data in downstream
decision making. Reconciled data from process operations is used for simulation
calibration (Reimers, Werther, and Gruhn 2008), process control (Bai, Thibault,
and McLean 2006), and decisions with a scope ranging from daily operations to
large capital investments and environmental sustainability. In an ideal case, the
data reconciliation model would provide the information needed for uncertainty
quantification so as to evaluate the magnitude and risk of the decision against
the reliability of the source data, as well as aid in selecting the proper model
for a data set.

Bayesian statistical methods (Hoff 2009) allow for such models. Bayesian
inference results in probability distributions, instead of point estimates, of
model parameters, given the observed data and a model structure. Algorithms
are used to produce random draws from parameter distributions. The draws
obtained can be used in other calculations and analyses to gain further insight
into a process. A Bayes factor (Kass and Raftery 1995) can be used to aid in
selecting which Bayesian model is the best representation of a data set. Model
selection procedures and an understanding of the uncertainty of the results from
a model can substantially improve estimation accuracy and the understanding
of risk for decision making.

Prior studies in the technical literature show how Bayesian methods can be
applied to the data reconciliation of chemical processes. Tamhane, Iordache,
and Mah (1988) outlined a Bayesian model for gross errors in the observations
of a chemical process. In Romagnoli and Sanchez (1999), a model incorporating
Bayesian logic is used for data reconciliation of processes with gross and ran-
dom errors with mixed results. Methods for reconciling process data between
measured and unmeasured sampling locations, where error for process inputs
and outputs is independently distributed have shown favorable results (Cencic
and Frithwirth 2015). While the popularity of Bayesian methods is increasing,
studies in the literature using Bayesian methods for mineral processing are
still sparse. Of particular note are studies comparing classical methods and
Bayesian methods, financial modeling using Bayesian methods, and Bayesian
model selection related to data reconciliation models.
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The goal of this publication is to illustrate some of the advantages and dis-
advantages of Bayesian methods, examine some of the ways Bayesian data
reconciliation can aid in decision making, and guide the reader through using
the BayesMassBal package (Koermer 2020a), written for the R programming
language as a supplement to this publication. Methods (§3.2) outlines, model
structure, Bayesian inference used for model parameters and model selection,
approximation of the main effect of a variable independent of the process on
a function dependent on process metrics. §3.2.4 describes how to execute the
methods in §3.2 using the BayesMassBal package.

The Experimental section (§3.3) gives details of how simulated and real data
were used to test the usefulness of the Bayesian models. This section includes
details for the procedures used to apply the models to simulated data once,
conduct a Monte-Carlo experiment comparing the average behavior of the
Bayesian models and a point estimate model, and apply the Bayesian models to
real data. Results from the Experimental section and the authors’ interpretation
is provided in the Results and Discussion section §3.5.

3.2 Methods

3.2.1 Model Derivation

Observed mass flow rates for a simple separation process (e.g. one input, two
outputs) can be modeled as shown in Equation (3.3), equivalently Equation
(3.4), where S is a vector of true mass flow rates, € is a vector of random noise,
and y is a vector of observed mass flow rates.

y=pPB+e (3.3)
YF Br €F
ye| = [Bc| + |ec (3.4)
YT Br er

Due to the conservation of mass, this system must be constrained such that
Breed = BConcentrate + Bailings- To constrain the system, the true masses should
be represented using a vector 8 with two elements, as shown in Equations (3.5)
and (3.6).

YF Bc + Br €F
yo| = Bc + |ec (3.5)
Yt | Br €T
1 1 €F
={1 0 [5C]+ €c (3.6)
0 1 el e




Methods — 31

Equation (3.7) shows Equation (3.6) with general terms, where X, maps values
in B to values of y.

y=Xy,8+e (3.7)

Real plant operations have several nodes, often interconnected in complex
configurations. Equation (3.7) can be used to model and constrain a more
complex circuit by specifying linear constraints. Constraints for the two node
process in Figure 3.1 are listed as Equations (3.8). This process has one input,
three outputs and five sampling locations. To simplify notation, the remainder
of this document will use y; to stipulate the mass flow rate observed at sample
location j of N total sample locations.

Y2

C

Y1 P1

= Py ——>V3

C

T T

Ya Y5

Figure 3.1: Example multi-node circuit

B1 = B2+ pa

B2 = B3+ s (3:8)

The constraints in Equations (3.8) constraints can be indicated in the five
column, two row matrix C, shown in Equation (3.9), where the columns index
each B, and the rows index each constraint. Note, C8 = 0. Gauss-Jordan

elimination can be used to find the reduced row echelon form, Cr as in Equation
(3.10).

1 -1 0 -1 0
C_{o 1 -1 0 —1} (8:9)

1 0 -1 -1 —1} (3.10)

CR[O 1 -1 0 -1

Inspecting the reduced row echelon form reveals which elements of 3 are free.
Importantly, CrB = 0 holds. For a row in Cg the 8 indexed by the location of
a positive 1, can be substituted by the corresponding elements of 3 indexed by
the presence of -1. The resulting constrained model, built from Cg, is shown in
Equation (3.11). Note, the remaining elements of 3 are the process outputs.
More details on similar procedures can be found in Madron (1992).
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Y1 1 1 1 €1
Y2 1 0 1| (B3 €2
ys| = (1 0 O] [Ba| + €3
Ya 0 1 0| [Bs €4
Ys 0 0 1 €5
Y= X,B+e (3.11)

Usually data reconciliation is required for multiple sample components. A
component could be a mineral such as CuFeSs, an element of interest, or a
generic gangue material. To include multiple sample components in the model
the matrix X is written as a block diagonal matrix equal to the Kronecker
product Iy ® X, where M is the number of sample components and I/ is an
M x M identity matrix. ¢ indexes the M components of a sample, and @Q is
the dimension of the constrained 8. The structure of X for a two component
model is shown in (3.12).

X, 0

o X, (3.12)

v x)
(MN)x(MQ)

Lastly, the relationship between the elements of € must be considered. A constant
variance for all sample components at all sampling locations is not realistic (Wills
2006). Removing a constant variance assumption requires multiple sample sets
to be obtained. Let K be the number of sample sets. An individual sample set
k is made up of samples taken at all IV locations simultaneously. A subsequent
sample set, k + 1 is taken enough time apart from set k that collection of k
does not interfere with the observation k -+ 1. If variation in the process over
time is not of concern, an alternate method for obtaining K sample sets would
would be to take one sample set and make representative splits.

Let € be the covariance between the observations in sample set yi. For a model
where each y; ;. has independent variance, Q = diag(cf1,...,07 ..., 0 n)-
This specification indicates no error correlation between sample locations or
components. The resulting covariance matrix is shown in Equation (3.13).
Bayesian models using the error structure in (3.13) will be referred to as the

independent variance model for the remainder of this text.

o2
M,N 1 NMxNM

Error correlation is achieved by allowing off diagonal elements of €2 to be non
zero. A model allowing for correlated error may be a better fit for data, but
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requires more degrees of freedom for parameter estimation. Let the covariance
matrix 3; be the covariance of the mass flow rates of a sample component
between different locations. 33; is the covariance of y;. The covariance structure
for observation vy, is shown in Equation (3.14).

3

0

Q= .' > (3.14)
0

Y NMxNM

It is possible to specify other covariance structures such as correlation between
sample components at a given location. Complicated custom error structures
can also be specified. For simplicity, only the correlation as specified in (3.14) is
examined. For the remainder of this text, a Bayesian model allowing for error
correlated between mass flow rates of an individual component will be referred
to as the covariance model.

3.2.2 Bayesian Inference

Distibutonof | ———conme )
Samples

Model A

Observed Mass
Flow Rates Gibbs | =)

PA(B | Y, Qn)| ———> | Sampler o ms  me  ms om0 ms w0

Conditional Model A [>T —>f(Ba) )

Posterior g :

AP E= i
|
T T Model
Selection

Ya s e [ T e )

distbutionof |PAY) > Pa()? /\
Samples T

) | o=

0
Constraints Model B L
St Bt et %“
Y‘Yﬁﬁf“ﬂ ﬁ;q Gibbs S|
Ya= pPe(B |y, 2g)| ———>| Sampler =
Conditional Model B 9-
Posterior =]
]
]

Figure 3.2: Structural outline of applied Bayesian data reconciliation.

Bayesian inference of the model parameters is governed by Bayes’ rule (3.15).
However, p(y) is a constant, so in Bayesian inference, Bayes’ rule is often
reduced to (3.16).

_ (B, 2)p(B,92)

p(B,20y) o< p(y|B, 2)p(8, Q) (3.16)

(3.15)

Equation (3.16) can be read as, the posterior distribution of beta and omega
given the data observed, is proportional to the probability of observing the data,
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given omega and beta, times the prior probability of beta and omega. p(y|B,§Y) is
also known as the likelihood function, and can be written as £(3, €2|y). Through
Bayes rule, prior beliefs about model parameters are updated with observed
data to produce the probability distribution of model parameters a posteriori,
or after, observing data. More on the details of Bayesian inference can be found
in Hoff (2009).

While Bayes’ rule is fundamental to Bayesian inference, applications often
require a mixture of analytical derivations and computational approximations
of intractable integrals. Figure 3.2 gives a structural outline of how Bayesian
inference is applied to data reconciliation for separations. After obtaining
the data and specifying constraints, a conditional posterior distribution for
each model parameter is derived using Bayes’ rule (§3.2.2.1). The conditional
posterior distributions are used with a Gibbs Sampler; an algorithm which
iteratively obtains a large number of samples, or draws, from the marginal
posterior distribution of each model parameter (§3.2.2.2). These draws can
be simply binned into a histogram to visualize the form of the distributions.
More intricate analysis can be conducted using the obtained samples, including
applying a function to each draw obtaining draws from the function output,
model selection (§3.2.2.3) and economic analysis applications (§3.2.3).

3.2.2.1 Conditional Posterior Distribution Derivation

To derive the conditional posterior distribution for model parameters 8 and 3;
or 0127 ; » prior distributions first need to be specified. The prior distribution for a
parameter is then multiplied by the likelihood function, conditioned on the other
parameters. Working in proportionality allows for dropping constant terms, and
the resulting expression can be recognized as the kernel of a conditional posterior
distribution. The kernel of a distribution is the elements of a distribution
function without its normalizing constants. More details can be found in Hoff
(2009).

To use the methods in §3.2.2.3 the prior distributions are required to have a
known distributional form. Conditionally conjugate priors are used, where a
conjugate prior for a parameter has the same distributional form as its posterior
distribution. Sometimes reference priors, containing little information, are
desired. More on such priors can be found in Kass and Wasserman (1996)
and Yang and Berger (1996), however these priors are not compatible with all
the methods used in this text. Conjugate priors usually influence posterior
inference more than reference priors, but prior distribution hyperparameter can
be specified to give little influence over the posterior distribution.

The conditional conjugate prior for 8 is a truncated normal distribution with
a mean of pg and a covariance of Vj with a left truncation bound at 0. The
prior belief that p(/3) is bounded at 0 is stipulated, because even before viewing
any data, one can be sure negative mass is not relevant to this application. To
minimize influence of the values chosen for pg the diagonal elements of V{ can
be specified to be large, flattening the prior distribution of B.
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For the independent variance model a prior distribution is placed on each 0127 i

The conjugate prior used for the variance is an inverse Gamma distribution
with hyper-parameters o and (y. ag and .

In the covariance model, p(X;) is specified to be an inverse Wishart distribution
(Hoff 2009) with hyper-parameters of the scale matrix Sy, and the degrees of
freedom vg. Specifying the hyper-parameter values for p(X;) can be confusing
for this high dimensional distribution. It is necessary to specify vg > N — 1,
specifying vy = N will cause the prior distribution to have less influence over
the posterior distribution compared to higher values. In Gelfand et al. (1990)
an equivalent scale matrix was specified by a diagonal matrix containing rough
estimates of the variance multiplied by the prior degrees of freedom. Using data
to specify prior distribution hyper-parameters is known as Empirical Bayes,
some discussion on the topic can be found in Kass and Steffey (1989).

Appendix A.1 gives details for the derivation of conditional posterior distri-
butions. p(B|€2, X,y) is derived in Appendix A.1.2 as a truncated multivari-
ate normal distribution NO(B,V), where 8 = V(Vo_luo + KXTQ 1y, ),
V=(V;' + KXTQ ' X)™!, y,; ; is the a vector containing the mean of each
Yij,., and X is Ins ® X, the same form used to create the matrix in (3.12).

For the independent variance model (3.13), the conditional posterior distribution
for each O’Zj is invGamma, (% + ag, % Zle(ym’k - szJ )2+ 50)7 where :ELT]
is the row in X that maps 8 to y; ;. Derivation is shown in Appendix A.1.3.
When using the covariance model, with the covariance structure of
(3.14), the distribution p(X;|8, X,y) is WS,y + K). S is equal to
(Zle(yi,k - XiB)(yix — Xiﬁ)T) + Sy. Derivation of this inverse Wishart
conditional posterior distribution is shown in Appendix A.1.4.

3.2.2.2 The Gibbs Sampler

Algorithm 3.2.1: Gibbs Sampler for Error Structure in (3.14)
Result: Draws from the marginal distributions of 8, 31, ..., 3y
initialization: B, T, BV, Egl), R 25\?;
fort=2,3,....,T do
Q « BlockDiagonal(£{' 1, ... 5{ ")y,
BY ~ No((Vy ' + KXTQIX) (Vg o + KXTQ i), (Vg ' +
KXTQ-1X)™1);
fori=1,...,.M do
s~

wt ((Zf:l(yi,k — X B (yi g, — XiBNT) + So, 10 + K);

end

end
Save samples from t = B+ 1,B+2,...,T
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It is worth restating, the goal is to draw samples from the marginal distribution
of p(B|X,y) and each p(X;| X, y) or p(07,;|X,y). A Gibbs sampler is a Markov-
Chain Monte-Carlo (MCMC) method which generates random samples from
the marginal posterior distributions.

To implement a Gibbs sampler, first a value for each model parameter must
be initialized with a semi-arbitrary value. Initialization values can have an
effect on convergence time. Then iterative draws of each parameter are taken
conditional on the previous draw of the other parameters, using the conditional
distributions specified §3.2.2.1. Tterating over the conditional distributions is
analogous to averaging, or integrating, over the conditional model parameters.
Some iterations after initialization, the Markov-Chain converges on the target
distribution. The initial draws before convergence are discarded as Burn-in
iterations. If the algorithm has converged properly, samples after t = B are
from the marginal target distributions. These random samples can be directly
used to calculate recovery and grade, generating samples from the probability
distribution for both of these metrics. Steps for the covariance model are listed
in Algorithm 3.2.1, while the Gibbs sampler for the independent variance model
replaces X; with aij. More detail on Gibbs samplers can be found in Casella
and George (1992) and Gelfand et al. (1990).

When using an MCMC tool such as a Gibbs sampler, there is some time
before convergence and there will be some autocorrelation between sequential
draws. Ideally, sequential draws from the marginal posterior distribution are
independent, and have no correlation. Statistical tools have been developed
for checking convergence and if autocorrelation is at an acceptable level. A
calculation for effective sample size can be used to quantify the auto-correlation
observed in the draws (Liu and Chen 1995). The closer the effective sample size
is to the number of samples taken, the less auto-correlation there is between
the samples.

The test for convergence used is the CD score (Geweke et al. 1991). This
score blocks the samples taken and compares the mean of each block. If the
Markov chain has converged, the difference in the means weighted by their
standard error can be simulated from from an asymptotic standard normal
distribution. The resulting score is interpreted similarly to a Z-score, where if
values are observed greater than 1.95 standard deviations apart, they may not
necessarily come from the same distribution. CD scores and effective sample
size are computed using the geweke.diag() and effectiveSize() functions,
respectively, from the coda V 0.19.4 package (Plummer et al. 2006).

A less quantitative method of observing the independence of subsequent draws
is to plot the values of each draw for a parameter sequentially. A plot of this
style, made from draws that have low auto-correlation and have converged, will
look more like a fuzzy caterpillar than a snake.
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3.2.2.3 Model Selection

“All models are wrong, but some are useful,” is a commonly stated excerpt from
Box (1976). Model selection aims to objectively determine which model, out of
a group of models considered, is most useful, or best represents the data.

One method for Bayesian model selection is the calculation of a Bayes factor
(Kass and Raftery 1995). For a given model M;, the likelihood of observing
the data collected, given the model is true, is called the marginal likelihood,
p(y|M;). For two models {My, M}, a Bayes factor, shown in Equation (3.17),
is the ratio of two marginal likelihoods, and is used to compare the models.
To improve numerical stability, a logarithm of the Bayes Factor is used and
reported (Equation (3.18)). This publication and the BayesMassBal package
use log,.

_ ply|My)
B = k) (317)
log.(BF) = log, (p(y|My)) — log, (p(y|Mz)) (3.18)

There are a few methods to calculate or approximate the marginal likelihood.
Since a Gibbs sampler and conditional conjugate priors are used, methods in
Chib (1995) are appropriate. The approximation in Chib (1995) hinges on the
marginal likelihood identity, or that Equation (3.19) holds for any value of 6,
making Equation (3.20) true.

p(yl0, My)p(0| M)

p(y|M;) = 2(0ly, M) (3.19)
_ p(ylo, My)p(0]My) (3.20)
p(o‘yaMl)

For a one parameter model, it is possible to simply evaluate each of the densities
on the right hand side of Equation (3.20). For a two parameter model, with
parameters 0 = {61,602}, it is necessary to break down the denominator in (3.20)
further, as shown in Equation (3.21).

p(§|ya Ml)
= p(02101, y, My)p(6: ]y, M) (3.21)

— p(Baldr,y, M) / p(81 16, 1, My)p(Bay, M) d6s

To solve the integral, the Gibbs sampler output is used along with Monte
Carlo integration methods (Chib 1995; Metropolis and Ulam 1949) by the
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approximation shown in Equation (3.22). The rest of the densities are simply
evaluated for values of 6.

T

p(1ly, My) ~ z (0116”, , My) (3.22)
=B+

When implementing the models in §3.2.1 most applications will have more than
two model parameters. While Chib (1995) gives methods for computing the
marginal likelihood for models with more than two parameters, the independence
of some of the model parameters can be exploited to avoid this treatment and
reduce computation time. For the covariance model, each ¥; is independent.
The joint posterior density can be broken down and then approximated as
shown in (3.23).

p(6721a"'72i7"'721\/[‘y)
:p(2M|2M717ailvgay)p(21|67y)p(g‘y)
= (2M|B y) (21|5, ) (Bly)

/ / ﬂ|21a" 21\/[7y)d21 dz

(2M|B7 y)...p(%11B,y)

(3.23)

T
Z B=,... =y
t=B+

For the independent variance model the approximation is shown as Equation
(3.24).
~2 2 ~2 13
p(UMN|ﬂa ) . 'p(al 1|ﬂa )

T 3.24
ORI RER L ALY (324
t=B-+

3.2.2.4 HPDI

The highest posterior density interval (M.-H. Chen and Shao 1999), or HPDI is
used, to quantify the uncertainty of posterior distributions using the samples
obtained from the Gibbs sampler. For a uni-modal distribution, the HPDI is
the narrowest interval of the probability distribution containing 95% of the
probability mass. If samples are taken from a population with an unknown
mean and a known distributional form, the 95% HPDI of a posterior distribution
from an ideal model would contain the true mean 95% of the time. The HPDI
is a relatable measure of uncertainty of the metrics in question. It is used to
aid in financial analysis and assess model validity in this publication.
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3.2.3 Main Effects

For a function with independent inputs f(z1,x2,...,xx), Saltelli (2002) gives
the equation to estimate the sensitivity of f(z) with respect to z; as in (3.25).
The function being studied could be something along the lines of the net revenue
for the mine and, the independent input could be something like copper price.

ar ([f(@)]z;])
ar(f(x))

To visualize how the value of a function will vary with respect to an independent
input, the main effect can be plotted. The main effect, only part of (3.25),
is  [f(x)|z;]. To find the main effect, the integral, given in Equation (3.26)
(Saltelli 2002), must be solved.

S; = (3.25)

[f(@)|z5] =

// /fxl,..., = ﬁ (z;)dx; (3.26)
7

To observe the main effect of x;, while taking into account process uncertainty,
f(-) must be related to the output of a data reconciliation model. The balanced
mass flow rates, Ypal, are included as f(x,y). Then the expectation with respect
to x is taken, conditioned on x; and ypa1. The integral required to find this
expectation is shown as as Equation (3.27). For Equation (3.27) to be valid, =
and yYp, must be independent.

37 » Ybal |x]7 ybal]

/ /f$1,-~-7 i =Tj,- - Ybal = Ybal)

X Hp(:cz)dL

i=1
i#]

(3.27)

This integral can be approximated using Monte-Carlo integration methods
(Metropolis and Ulam 1949), by supplying values of x; and ypa;. Using draws
from the marginal distribution of yy,; it is possible to iteratively approximate

zlyva LS (T, Yba1) |, Yba1] over each draw of ypa1, marginalizing over ypa1, and
producing draws from the distribution of ,[f(2,yba1)|z;]. These resulting
samples show the uncertainty of the expected value of f(x,yra), specifically
related to process uncertainty.

The implementation steps used are mostly adapted from the main effect algo-
rithm for an unrelated application in Gramacy (2020). An implementation,
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where each x is independent and uniformly distributed, can take advantage of
Latin hypercube sampling (LHS) (McKay, Beckman, and Conover 1979) which
has favorable properties for approximating integrals.

3.2.4 BayesMassBal Package

The BayesMassBal Package (Koermer 2020a) was built to make Bayesian data
reconciliation methods more accessible, as well as make the results of this
paper easy to reproduce. Functions are available that implement many of the
procedures outlined in Methods (§3.2) and performed in Experimental (§3.3).
The importObservations() function can be used to import and organize
observations for the models in §3.2.1. The function constrainProcess() takes
a matrix of linear constraints, as specified in (3.9), and produces the matrix
X, as in Equation (3.11).

Methods in §3.2.2.2 and §3.2.2.3 are implemented in the BMB() function. The
argument BTE = c(B,T,E) is a numeric vector specifying the number of Burn-
in iterations, Total iterations, and that Every E* sample is saved. E > 1
cuts down on auto-correlation between consecutive samples at the expense of
computation time.

Error structure is selected using the cov.structure argument. cov.structure
= "indep" selects the independent variance model. The covariance model in
this publication can be selected by setting the argument cov.structure =
"component".

The default prior hyperparameter settings specified by the BMB() function
were used for all inference in this publication. The default mean of p(8) is
set to the ordinary least squares estimate Bors = (XTX)~1XTy. The prior
variance of each f, is equal to 10 to the power of the number of integer digits in
BAOLS,q + 6. For the independent variance model a default prior distribution of
invGamma (0.000001, 0.000001) on each Uzj is specified. This prior is fairly flat,
but is still informative (Gelman et al. 2006). For the covariance model a prior
distribution of W*I(N , N x Sp,;) was used for each 3; where Sy ; is a diagonal
matrix with the sample variance of each y; ; as each element. Allowing the prior
distributions to be informed by the data allows for the default settings of BMB()
function to better adapt to general use cases. However, a more pure Bayesian
approach to Bayesian data reconciliation can be taken by specifying the priors
argument for BMB() as a list of hyperparameter settings. When implementing
these methods on a complex circuit with large amounts of correlation between
nodes or sample components, a large data set may be required to reduce the
influence of the prior distributions. If a small data set is used, for example a
data set which adds a number degrees of freedom less than the dimension of
3, + 1, the user should specify hyperparameters for the prior distributions,
perhaps based on their intuition or old data. See the package documentation
for the priors argument of BMB() (Koermer 2020a) for more information.

Setting BMB(...,1ml1 = TRUE,...) indicates the log-marginal likelihood should
be approximated.



Experimental — 41

The default argument setting, diagnostics = TRUE, returns the CD score and
effective sample size for each element in 3, and 2. The trace plots discussed
at the end of §3.2.2.2 can be created by feeding the output from BMB() to the
plot () function by specifying plot(...,layout = "trace").

The main effect can be computed as outlined in §3.2.3 by passing the output of
the BMB() function to the mainEff () function and supplying code for f(x, Ypal)-
See Appendix A.5 or package documentation for details.

The simulated data used in §3.3.1 is obtained using the default arguments of
the twonodeSim() function. This function simulates seven data sets from the
two node process in Figure 3.1 with sample components of CuFeSs and gangue.
Each data set is independent and identically distributed. There are three sources
of stochasticity, variability in feed rate, variation in process performance, and
independent assay noise. These sources induce both independent and correlated
errors. See help("twonodeSim") and the package source code for more details.

The pointmassbal() function implements a point estimate mass balance,
adapted from Wills (2006) and derived in Appendix A.2, for a two node,
two component process. This function was used for the applications in §3.3.1.1
and 3.3.1.2 where the Bayesian models are compared to a point estimate model.
To allow for easy inspection of the source code, the function was included with
the BMB package.

3.3 Experimental

This section details experiments conducted to test the usefulness and accuracy
the Bayesian data reconciliation models. Section 3.3.1 outlines a simulation
study which explores the use cases for the output of the Bayesian models for
plotting posterior distributions and main effects, as well as model selection
(§3.3.1.1). An advantage of testing a statistical model on simulated data is the
ability to check the statistical model against the known expected output of a
simulation. Since the expected output of the model is known, simulated data
was used to compare the accuracy of the Bayesian models to a point estimate
model. Derivation for the point estimate model is shown in Appendix A.2. A
Monte Carlo experiment where every model was fit to each of 1,000 data sets
was completed for this comparison in §3.3.1.2. Section 3.4 tests the application
of the Bayesian models on real data.

3.3.1 Application on Simulated Data
3.3.1.1 Model Implementation

A data set was generated and is listed in Table A.1 in Appendix A.3. Linear
constraints were specified and constrainProcess() was used to find the X
matrix required for BMB(). Then, two calls to BMB() were used, one for each
error structure stipulated in §3.2.1. Default prior settings were used and
1m1=TRUE was specified. For each function call, 100,000 samples were collected
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after 10,000 burn in samples were removed and every other sample was thinned
from an initial 210,000 samples.

Sample code for the data simulation, specifying process constraints, and running
the Bayesian data reconciliation models is shown in Appendix A.5.

The output for both Bayesian models was checked for convergence using the
CD score and for auto-correlation by calculating the effective sample size. A

summary of the worst values observed is included as Table A.2 in Appendix
A4,

The point mass balance model derived in Appendix A.2 was fit to the same
data. The mean observed mass feed rate into the plant for the sample set was
used for calculations involving the point mass balance model.

Table 3.1: Values used in financial and sensitivity calculations.

Parameter Current Min Max
Value

Milling and Mining
(8/ton Ore)
Processing Cost
($/hour)

Copper Price
($/ton Cu)
Treatment Cost
(3/ton Concentrate)
Refining Cost
($/ton Cu)

Freight

(8/ton Concentrate)

1,500 1,125 1,875
6,000 3,880 9,080
40 20 60
160 96 208

25 20 60

The usefulness of the output from the Bayesian models was explored by plotting
posterior densities of outputs and metrics calculated using the obtained samples.
Figure 3.4 shows these densities along with 95% HPDI bounds, outcomes from
the point estimate mass balance, and calculations from the expected value of
the simulation.

The posterior density of net return from smelter (NSR) (Wills 2006) is one of
the densities plotted, illustrating the utility of uncertainty quantification in
financial analysis. NSR calculates revenue per ton of feed ore, and requires
many of the mass balanced flow rates. The calculation is related to commodity
prices, freight, treatment, and refining. The formula for calculating NSR is
shown in Equation (3.28), and the values used for Figure 3.4 and §3.3.1.2 can
be found under the Current Value column in Table 3.1.

Cc x 0.346 C
NSR = % X (6000 — 160) — — x 40 (3.28)
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Processing cost per ton of ore mined is related to the uncertainty regarding the
true plant feed rate. In real life uncertainty in processing cost can be related to
mis-calibrated belt scales and improperly quantified feed surges. This density
was found by taking the Current Value hourly plant operating cost given in
Table 3.1 and dividing it by the combined mass flows for total plant feed. The
density for net revenue was found by setting the mining cost per ton to a
constant and subtracting the processing and mining cost from NSR.

After using the BMB() function for both Bayesian models, a Bayes Factor was
used for evidence that one model is a better fit to the data than another.

Samples from the covariance model were then used to plot the main effect of
copper price on net revenue. This was implemented by passing the output
from BMB() to the mainEff () function along with a user specified function that
calculates net revenue using the reconciled data. The code for the function
calculating net revenue is included in Appendix A.5. See the BayesMassBal
package documentation for more information on implementation. The output
from the mainEff () function was used to generate Figure 3.5, to illustrate how
the output from a Bayesian model can be used to gain a better understanding
of how process uncertainty effects the bottom line.

3.3.1.2 Model Validation

Figure 3.4 allows for the results of the data reconciliation models to be compared.
However, these specific results are dependent on the single data set used to
generate them. Since there is variation in the data obtained from a stochastic
process simulator, there will be variation in the results from each model between
data sets. Little can be concluded from fitting the models to one data set.
If performance between models is to be compared, the comparison must be
completed over a large number of data sets.

To observe average behavior, a Monte Carlo experiment was run. The
twonodeSim() function with default arguments was used to generate 1,000
sets of 7 observations. For each data set, both Bayesian models and the point
estimate model were used to reconcile data using the same methods as §3.3.1.1.
Using the reconciled data from each model, net revenue per ton processed was
estimated. Net revenue was chosen for the comparison because its calculation
relies on multiple estimates from the data reconciliation models. For the point
estimate model, the estimate for net revenue was recorded. For each Bayesian
model, the posterior mean and 95% HPDI was recorded.

3.4 Application on Real Data

A disadvantage of using a simulation to test a model is that it is not always
clear that the model can be used on real data. Sometimes models require
assumptions that make use on real data unreasonable. For the Bayesian models
in this paper, the steps used with real data are indistinguishable from the steps
required for use with simulated data.
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Figure 3.3: Flowchart of SX system used for data collection
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Data was obtained from a pilot scale liquid-liquid extraction system for rare
earth elements. The total rare earth element (TREE) mass flow rates needed to
be reconciled, and could then be used to calculate concentrations. Figure 3.3 is
an illustration of the pilot plant. The lighter yellow areas represent an organic
solution, while the blue areas represent an aqueous solution. Unlabeled inputs
are fresh chemicals fed to the system, assumed to have zero rare earth element
content. Samples from the system were taken every hour for 44 hours at each
of the 10 numbered locations. Only six samples of pregnant leachate solution
(PLS) were taken over the course of the test, however the PLS samples were
found to have little variability. It was deemed appropriate to use the bootstrap
resampling technique (Efron 1979) to produce a PLS assay for each sampling
interval from the 6 observations. In doing so, the 6 original data points were
randomly sampled with replacement 44 times thereby expanding initial PLS
sample set into a sample set containing 44 observations. The bootstrap technique
operates under the assumption that all original data were obtained from the
same distribution. After examination of the data for the remaining sampling
locations, it was determined 26 of the samples were obtained after steady state
was reached. These 26 samples would be used for data reconciliation.

Next, linear constraints specified in Equation (3.29) were passed to the
constrainProcess() function, and the required X argument of the BMB()
function was generated. The default prior hyperparameter settings for the
BMB() function were used. Posterior draws from both Bayesian models were
generated along with approximations for the log-marginal likelihood. 100,000
iterations of the Gibbs sampler were run after a burn in of 10,000 iterations by
setting the argument BTE = ¢(10000,110000,1).
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0 = ypLs + Yo5 — Yo1 — Yos

0 = yo1 — Yo2 — Yo7

0 = Yo2 — Yo3 — Yos (3.29)
0 = Y03 — Yoa — Yoo

0 = Yoa — Yos — Y10

Upon inspection of the MCMC diagnostics, effective sample size was relatively
low. In particular this was true for the covariance model, with the minimum
value at 16,850. Checking auto-correlation plots for the samples revealed a lag
in correlation of about 10 iterations for the chain. The Gibbs sampler was rerun
for 1,000,000 iterations, and after 10,000 samples were removed as burn in,
every 10" sample was saved as one of the independent draws from the marginal
posterior distribution. A summary of the resulting diagnostics is shown in Table
A.3 in Appendix A.4. Performance was improved at the expense of computation
time.

Lastly, both of the Bayesian models were compared by computing the log(BF)
from the output in BMB() $1ml.

3.5 Results and Discussion

Part of the motivation for the Bayesian Mass balance is in part to provide
a useful model that has some advantages over a point estimate model. The
posterior density plots described in Section 3.3.1.1 are shown in Figure 3.4. For
the single data set used to generate Figure 3.4, each model shows a case where
it provides the best estimate. More importantly, these plots show how Bayesian
models provide more information about process uncertainty, and therefore more
insight into the process. When viewing the Bayesian densities, one gets an
idea of the likely range of outcomes, instead of just a single value with no
uncertainty quantification. The plotted HPDI intervals allow for visualization
of the uncertainty quantification. Shorter intervals indicate less uncertainty.
Figure 3.4 also gives insight into how both Bayesian models are related. The
independent variance model generally shows a tighter HPDI than the covariance
model.

Selecting a model via Bayes factor in Section 3.3.1.1 is achieved using the output
of BMB(). Letting M; be the covariance model, and M5 be the independent
variance model, a log(BF) = log(p(y|M7)) — log(p(y|Mz)) = 126.9 was calcu-
lated. A log(BF) of 126.9 shows the covariance model is certainly a better fit
to the data than the independent variance model (Kass and Raftery 1995). The
result is not surprising. Because feed rate varies stochastically, observed flow
rates will be correlated. When there is a feed surge, all flow rates for a given
component should increase accordingly. Correlation between locations is also
induced via the stochasticity in process performance. Knowing this simulation
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Figure 3.4: Results from reconsciliation of simulated data, including posterior
densities with 95% HPDIs, point mass balance estimates, and true values.
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Figure 3.5: Main Effect of Cu price on Net Revenue.

structure, support for the correlated error model indicated by the Bayes factor
is sensible.

The main effect plot in Figure 3.5 displays how the output of a Bayesian model
can be used for further insight into applications related to process uncertainty.
The distribution of ,[f(z, Yba)|z;], where f(z,Ybal) is net revenue per ton
processed and x; is copper price, is plotted for a sequence of copper prices. This
plot gives an engineer insight into how the uncertainty of process performance
effects net revenue per ton mined. It is shown that when copper price is low,
the interval for  [f(x, Yva1)|x;] is more narrow, indicating lower uncertainty of
the expected net revenue. When copper prices are higher, the interval is wider,
showing higher uncertainty in the expected net revenue. This is an interesting
relationship as it indicates there is more uncertainty in net revenue per ton
processed when commodity prices are higher. Examining Equation (3.28) this is
a sensible relationship. There is a one dimensional distribution for % which is
scaled by the change in copper price, effectively broadening the distribution for
the slope of the line as copper price increases. Variability in other calculations
shift the intercept of the line, and are unaffected by a change in copper price.
This graphical method allows for easier visualization and communication of

such concepts, and can be used to understand more complicated relationships.

Figures 3.4 and 3.5, as well as the model selection application show there are
uses for the output of Bayesian data reconciliation models. However, if the
model is wildly inaccurate, these applications are useless. The results of the
Monte Carlo experiment (§3.3.1.2) in Figure 3.6 show the Bayesian models are
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Figure 3.6: Variability of expected net revenue, taken from Monte Carlo simula-
tion.

in fact useful. The left box plot in Figure 3.6 shows that the median of result
from all three models is close to the truth. The small discrepancies are likely
due to Monte Carlo variance. The script used to generate the data for Figure
3.6, as well as the data obtained for this publication, are available on an online
repository [dataset](Koermer 2020b).

More important is the variability in the results. Fifty percent of the observations
lie within the box, the whiskers represent the 1.5 interquartile range, and the
points represent outliers. Both of the Bayesian models have more narrowly
bounded boxes, whiskers, and outliers. For this data generating mechanism, a
point estimate mass balance is more likely to produce results that show the
process is unprofitable, or embellish the profitability giving decision makers a
false sense of confidence.

The right box plot in Figure 3.6 displays the disparity in variability using the
distance of each estimate from the true value. The median for both Bayesian
models is clearly lower than the median for the point estimate model, implying
the Bayesian models are frequently closer to the true value. The upper whiskers
for the point mass balance extend to almost $1.50/ton higher than the Bayesian
models. When the true net revenue is 1.669 the level of inaccuracy is concerning.

With these results, an important question to ask is, Why did the point estimate
model perform so poorly? One possibility is the error structure of the point
estimate model, as the lack of error correlation is a mis-match for the data
generating mechanism. However, the error structure is practically the same
for the independent variance Bayesian model, so there must be other, more
important, factors.

Looking at the model derivation in Appendix A.2 gives some more clues. First,
the error for the reconciled assay values, a, in Equation (A.5) is normally
distributed. @ is a percentage on [0,100], while a normal distribution has
infinite support, making the least squares criteria in (A.5) a mis-specification.
In the beginning of this investigation, the point mass balance was observed
to perform poorly for assays near 0% or 100%. The default parameters in
twonodeSim() are specified to give assay values that are not too close to 0 or



Results and Discussion — 49

100, so that the comparison between models is fair. The point estimate model
in Appendix A.2 was chosen as it was expected to work well with a low number
of observations, relative to methods which estimate a full covariance matrix.

Another hypothesis for why there may be a difference between the accuracy of
the point estimate model and the Bayesian models is simple; for this application
there are some advantages in using Bayesian inference. When sample variance is
estimated for the point estimate model, there is no account of the uncertainty of
that estimate. For the Bayesian models, the marginal distribution of reconciled
mass flow rates is obtained after integration over all possible values for the
model variance or covariance parameters, likely having some positive effect on
model accuracy.

Moving on to a comparison between the two Bayesian models, Figure 3.6 shows
little difference between the posterior mean accuracy of both models. The
accuracy of uncertainty quantification is another issue. A perfect model would
place the true net revenue within the bounds of a 95% HPDI, 95% of the time.
In the Monte Carlo experiment, the more narrow 95% HPDI bounds of the
independent variance model contained the expected net revenue in 93.3% of
the experiments, underestimating the uncertainty. The comparatively wider
95% HPDI bounds of the covariance model captured the expected net revenue
97% of the time, a slight over estimate. While the posterior mean values from
both Bayesian models were accurate, the covariance model was observed to
have superior uncertainty quantification. This result is corroborates the results
found from the Bayes factor, which strongly suggested the covariance model
was a better fit for the data.

—— Density

— 95% HPDI

—— Posterior Mean

--- Mean of Observations
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Concentration (= g/L)

Figure 3.7: Mass balanced concentration of stripping solution.
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Bayesian mass balance methods are not relegated to use only with simulations,
nor do they require assumptions that are impossible to determine for real data.
Section 3.4 shows Bayesian data reconciliation works well with real data. When
using the real data set, there were some issues with auto-correlation. Initially
the minimum effective sample size of a parameter for either model was 16.9%
of the total collected samples. Auto-correlation issues were resolved by running
the Gibbs sampler for more iterations and saving less samples. This practice
of thinning the samples improved the minimum effective sample size for a
parameter to 93.1% of the total. None of the CD scores are high enough where
convergence is of concern.

Using the output from calling the BMB() function for the independent variance
and covariance error structures, a log Bayes factor of 126.52 was approximated.
A Bayes factor with this value shows strong support for the covariance model
being a better explanation of the data. The resulting Bayes factor is sensible,
as one would expect there to be some error correlation for this complicated
liquid-liquid extraction process.

After selecting the covariance model, the posterior draws were used to plot
a density for concentration of the stripping solution as well as the posterior
mean, and 95% HPDI in figure 3.7. This plot shows the best estimate of of the
concentration is 103,000 pg/L, and it is likely the true concentration is between
96,060 and 110,000. The arithmetic mean of the observations falls within the
bounds of the 95% HPDI. It is quite possible this value is the true concentration.
However, simply taking the mean of the observations does not take into account
the conservation of mass or error correlation which may occur as concentrations
fluctuate. While using the mean value can give an ok estimate and is easy to
do, it can give less reliable results.

One downside of Bayesian data reconciliation is an increase in computation
time. The average time for data reconciliation and approximation of the the
log-marginal likelihood using the simulated data was 13 minutes on an laptop
with a 2.8 GHz Intel i7 processor and using Intel’s math kernel library. This time
is reasonable, but it is much longer than the perceptually instantaneous results
produced form the point estimate model. A much longer computation time
was observed when real data was used, due to the computation time required
to produce the 1,000,000 draws before burn in was removed and samples were
thinned. Average time for the two models was 43.9 minutes, which is longer but
still not unreasonable. However, for a process with more sample components
or many nodes, computation time for a Bayesian mass balance can start to
become an issue.

With some additional code, perhaps using the doParallel and foreach pack-
ages, it is possible to run the BMB () function in parallel to reduce the computation
time. Parallel processing was not implemented in BayesMassBal V. 1.0.0 to
ensure ease of use. While computation time is the most obvious downfall of
some applied Bayesian methods, spending some money on a computer upgrade,
renting time on a cloud computing service, or waiting a little extra time for the
results, is likely less costly than making a less informed, hasty decision.
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A second downside is the added complexity in implementation. Bayesian infer-
ence is often reserved for graduate level statistics coursework. However, the tools
in the BayesMassBal package remove many of the barriers of implementation
for individuals unfamiliar with the intricacies of Bayesian inference.

3.6 Conclusion

Bayesian data reconciliation methods are useful. Most importantly, the posterior
mean can be more accurate than estimates produced from a well established
point estimate model. Model selection methods for Bayesian models are already
established, and can be used to find which model best fits a data set, allowing
for more reliable data reconciliation.

The uncertainty quantification inherent to Bayesian methods allows for the
generation of posterior distribution plots which can aid in the understanding
of the precision of performance metrics. Applications such as plotting a main
effect can also take advantage of the uncertainty quantification.

Bayesian data reconciliation is not just a thought experiment or only useful
with simulations. These methods can be used on real data. The BayesMassBal
package was designed with use on real data in mind. Models not specified in this
publication can further improve accuracy. While the BayesMassBal package
includes models that can work well in a general sense, some applications may
benefit from custom built models.

The Bayesian models were shown to be superior to the point mass model in
this examination. However, each unique data set presents its own series of
challenges. Even with the sound theoretical reasoning and results presented
indicating Bayesian data reconciliation is superior, the models presented are not
a catch-all best choice for every scenario. Through the BayesMassBal package,
published as a companion to this article, the reader can easily see if Bayesian
data reconciliation is useful for their unique process.
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Chapter 4

Analysis of Steady State

Abstract

To improve efficiency, separations engineers will typically design process circuits
containing recirculating streams, which mix one or more of the process outputs
with the feed material. Doing so can improve efficiency, but will cause a delay
in the system reaching steady state conditions until the recirculating load mass
flows stabilize. In testing separation circuits, often engineers will test a variety
of factors and complete an analysis from sample results. Knowledge of if a
process is at steady state, as well as the steady state conditions of a process,
is essential for a valid techno-economic analysis. However, the definition of
process steady state is often poorly defined, or does not include uncertainty
quantification. If the performance of a process operating under two different
sets of conditions are compared, an engineer who does not test for steady state
or quantify steady state conditions risks producing a faulty analysis. In this
chapter, a Bayesian statistical method for testing if all streams are at steady
state is further motivated and then derived. Then after testing for steady state,
the same model is used with a prior distribution which enforces a steady state
assumption to estimate steady state conditions. The resulting models are then
used with observed conditions of a solvent extraction plant to infer steady state
conditions which can be used as a part of further analysis.

4.1 Introduction

A process at steady state, is one where properties of interest do not change
over time Paula (2006). A typical property of interest for the steady state of a
separation process is mass. For example Figure 4.1 shows a simple separation
process, which could be considered to be operating at steady state while the mass
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flow constraint F' = C + T is valid. Often process models for data reconciliation
(see Koermer and Noble 2021) require a data to be collected from a process
at steady state. Calculations of the percent of a feed component exiting the
process in a concentrate are invalid prior to achieving steady state. The amount
of time for a solvent extraction (Lo, Baird, and Hanson 1983) circuit to reach
steady state is non-trivial, and estimating when a circuit reaches steady state
without a mathematical framework can lead to inconsistent analysis.

Yy, —> P, —> Y2

Y3

Figure 4.1: A simple separation process showing the input feed flow F', the
concentrate flow C, and the tailings flow T

There are numerous statistical methods in the literature for estimating steady
state. A simple method is to take a collection of data observed within a specified
time window, and calculate if the range of this data is less than some previously
stipulated tolerance (Bethea and Rhinehart 1991). A slightly more complicated
method is to use linear regression with the same data set and test if the slope of
the data over time is equal to zero (Bethea and Rhinehart 1991). Similar to an
F-test, Von Neumann (1941) proposed using a ratio between the mean standard
squared deviation from the sample mean and the mean squared deviation
between subsequent data points. Using this R statistic method the statistic for
a process at steady state has an expectation equal to 1, assuming there is no
autocorrelation between the data.

Filtering methods, described in Cao and Rhinehart (1995), compute a similar
ratio of variances using an exponentially weighted moving average. While this
method is able to filter data and test for steady state, it is not suitable for
data with autocorrelation and an arbitrary tuning parameter must be selected.
Uncertainty quantification is mostly absent from these methods.

As an alternative, a Bayesian tool for quantifying and estimating steady state
conditions is proposed. First, a linear time series model is used to check
evidence of stationarity of the data observations. If there is sufficient evidence
the observations are from a stationary distribution, the expected value of the
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mean, given the condition of stationarity, can be computed and utilized for
further analysis. Although these tools are imperfect, having a rigorous definition
of steady state is advantageous for comparing multiple processes and process
parameters within an analysis.

4.2 Methods

4.2.1 Bayesian Inference

Bayesian inference differs from classical statistical inference, in that model
parameters are inferred through Bayes’ rule (4.1).

_ p(ylf)p(8)

p(0ly) prm

(4.1)

Importantly, a prior distribution p(#) on model parameters 6 can be specified
before any data is observed. One can incorporate knowledge about the model
parameters into the prior distribution to ensure reasonable inference of the
posterior distribution after data is observed p(f|y). As a relevant example, if
one wanted to assume that the value of an inferred model parameter was bound
between -1 and 1, they could specify a normal prior truncated at -1 and 1.

Often, analytical inference of the marginal posterior distribution of a model
parameter is intractable. Numerical Markov-Chain Monte-Carlo methods,
particularly the Gibbs sampler (Gelfand et al. 1990), are often used in Bayesian
inference to obtain samples from the marginal posterior distribution of model
parameters. See the textbooks of Hoff (2009) for further details on Bayesian
inference and Robert and Casella (2013) for further information on Monte-Carlo
methods for statistical simulation.

4.2.2 The Autoregressive Time Series Model

An autoregressive (AR) time series process is a model where a future state is
dependent on the past state (Shumway and Stoffer 2000). An example, which
includes the addition of a constant value (u), and random normally distributed
perturbations (¢) is shown in Equation (4.2). In the model shown, the state
at time step t, y;, is dependent on the previously measured value y;—1. y:
is separated temporally from y;_; by a consistent and discrete time interval.
Because y; is only dependent on a single lagged value of the observation, the
model is referred to as an Autoregressive 1, or AR(1), process.

Yo = QY1+ L+ € (4.2)

A weakly stationary time series process implies that the variance of the process
is finite, the mean is constant in time, and that the covariance between two
observations is only dependent on their difference in time and not the value
of some t itself (Shumway and Stoffer 2000). For a weakly stationary process,
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from here on referred to simply as stationary processes, it is possible to predict
a future y;,; from y; using a linear model. For the AR(1) process (4.2) is
stationary only if [a| < 1 (pages 87-90 of Shumway and Stoffer 2000) mean that
the process generating y; from y;_; is stationary, and causal.

If a = 1, the process is considered a white noise process, or a random walk
and considered non-stationary because of the non constant mean. If |a| > 1
the process is considered stationary, however the observation y; is dependent
on future observations y; . (page 80 Shumway and Stoffer 2000), making the
model not useful. A stationary process and exploding process are shown in
Figure 4.2. One can gain intuition as to why an exploding process is problematic
by iterating through Equation (4.2) with a > 1.

o yi=12y.1+2 ¢
o y;=0.5y.¢+2 °
—— Steady State
L
g .
o ®
> o °
e
°
. . ® ®
° o
—.—.—.—.—'—.—:—:—.—.—.—.—.—.—.—.—'—.—.—.—
I I I I
0 5 10 15

Figure 4.2: Example ayfgregressive processes

For a stationary process, the constant mean required for stationarity is not
given by p in Equation (4.2), and instead implies E[y;] = E[y;_1]. Given this
condition, the mean function of the AR(1), or in the case of this application
the process steady state, can be calculated as shown in Equation (4.3).

Ely:] =E[u + aye—1 + €
p (43)

l1—a

For a set of time series observations in discrete time from time y; to yr, if one
were to estimate the parameters p and «, and |a| < 1, then it would be possible
to estimate the expected value of the time series as (4.3).

4.2.3 Inference

Given a vector of T time series observations y modeled as Equation (4.2) with
€ ~ N(0,0?) the joint likelihood function can be written as Equation (4.4).
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ro1 3w a-xTw_1-x8)

L, a,0%y) < (62) = e 2 (4.4)

Where:

Y2
Y3

Without enforcing stationarity, the Jeffreys priors (Jeffreys 1946; Kass and
Wasserman 1996; Yang and Berger 1996) of p(3) « 1 and p(c?) o< 1/0? can be
stipulated for parameter inference. Using the prior p(3,0?) % produces the
conditional distributions for 3 as (4.5) and o as (4.6).

2-xTx)"1xTy_HTXxTx-xTx)"1xTy_y)

p(ﬁ|y7Xa 02) xe a2 (45)
_ Ly 1-x8)T(y_1-x8)
0%y, X, ) o (0%) T e (4.6)

Equation (4.5) can be recognized as a bi-variate normal distribution with a
mean of (XTX)™1XTy_;, and a covariance matrix of 0?(X7 X)~!. Equation
(4.6) can be recognized as an inverse gamma distribution with a shape parameter
of 1 and a scale of 1(y_1 — XB)T(y—1 — XB).

Inference of u, o, and o2 while enforcing a stationarity assumption can be
conducted by specifying a truncated multivariate normal distribution for p(f3).
The goal of utilizing such a prior is to bound inference of «a to between -1 and
1, but not to constrict the values of u. Allowing for prior independence of u
and « as p(u, ) = p(p)p(a), means that one can set p(u) = N (po,vo,,) and
p(a) = Nae(-1,1)(0,v0,o). The parameters for p(a) can be set with a mean of 0
and a large variance in order to limit the influence on the posterior.

Utilizing the truncated normal prior in conjunction with p(c?) = 1/02
leads to the conditional posterior derivations in (4.7) and (4.8), where Vj =
diag(vo,u, v0,a), Bo is the vector [ug, 0]7, B = (%XTX + ‘/071)_1 (%XTyA + V(flﬁo%

V= (ZXTX+ ‘/0_1)71, and I[|a| < 1] is an indicator function equal to 1
when |af < 1.
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_1 _~T~71 _~
p(BIX,y,07%) e 2F=A VA ]|a] < 1] (4.7)

o1y _30a-XATw =X

p(a?y, X, B) o (0?)" 7= “te” a2 (4.8)

Equation (4.7) can be recognized as a bi-variate normal distribution with a
mean of § and a covariance matrix of V. However, the distribution for the
second element of 3, corresponding to «, is truncated at (—1,1). Note that the
conditional posterior distribution of 02 written as (4.8) is equivalent to (4.6).

Inference for both the unconstrained and stationary models are carried out
using a Gibbs sampler, iteratively drawing the parameters from each conditional
posterior distribution. A function, named ssest and written in R, is provided
in Appendix B.1 for drawing samples from the marginal posterior distributions
using a Gibbs sampler. ssest can provide inference for bot the constrained
and unconstrained models. The y argument to the ssest function is a vector of
sequentially observed mass flows or concentrations. BTE is a three element vector
containing the number of Markov-Chain Monte-Carlo iterations for Burn in,
Total, and Every, with the same meaning as the methods in §3. The last argument
stationary is a logical where if stationary = FALSE the unconstrained model
is fit, and if stationary = TRUE the model is constrained so that |a| < 1. To
make the ssest function easier to use for a general audience, prior distribution
hyperparameters for the constrained model are loosely informed by the data.
The function sets By = [mean(y),0]7, and V; = diag(100 * var(y),1000) with
the intention of providing little information.

4.2.4 Application

To test the method, total rare earth element (TREE) concentrations were
observed from a solvent extraction (SX) processing plant at the locations
observed in 4.3. Flows entering or exiting a blue part of the diagram are
aqueous solutions and flows entering or exiting yellow parts of the diagram are
organic solutions. Unlabeled flows are assumed to have no TREE concentrations,
as they are fresh acid solutions used for stripping elements of interest from the
organic phase. Flow yg is a constant pregnant leachate solution (PLS) feed to
the system and did not need analysis. Flow y; is the feed of the organic phase
and not constant because of its use in other processes.

Samples were collected from each location hourly for 44 hours of run time. At
each location in Firgure 4.3 an unconstrained AR(1) model was fit to TREE
concentrations. For flow 9 the 12" sample was an outlier, almost twice as
large as any other measured concentration. Likely the unusually high value was
caused by sampling or laboratory errors, and only data after ¢ = 12 was used
for evaluation. For inference, the burn in was set to 500 samples and the total
number of MCMC iterations was set to 20,000.

Statistical samples of o were collected for each physical sampling location.
Researchers decided before fitting the models, that if 95% of the samples of
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Y2 Y3
Yy —3 —> Y4

[

Y5 Y6 Y7 Ya

Figure 4.3: Process used for data collection.

alpha were in between -1 and 1 the flow would be considered stationary. If all
flows were considered stationary, the process could be considered stationary
and at steady state. If after inspecting samples of a the process is deemed
stationary, then the model could be refit for each physical sampling location
with a prior on o which enforces stationarity. For any physical sampling location
where samples satisfying |a| > 1 occurred with the unconstrained model, the
equation for the mean of the process (4.3) is no longer valid. After refitting the
constrained model at each location using ssest(y, BTE = <¢(500, 20000,1),
stationary = TRUE) for each location. Then the expected steady state values
can be computed by evaluating (4.3) with each pair of samples p, @ to produce
the distribution of process steady state with uncertainty quantification. The
mean or samples of the distribution of [y|u, |a| < 1] can be used for further
technoeconomic analysis of the process.

4.3 Results and Discussion

After organizing the data and fitting the unconstrained AR(1) process, the
percent of samples of « satisfying |a| < 1 were computed and are tabulated
in Table 4.1. Inspection of Table 4.1 provides strong evidence of a stationary
process, given the requirement of 95% of samples satisfy |a| < 1, with the
lowest percent of samples at a given location satisfying the constraint is y3 with
97.74%.

Each data set was plotted with the information available from the parameter
samples. Similar plots to what is shown here are available by loading the
BayesMassBal package with library(BayesMassBal) and feeding the output
of the ssest function included in Appendix B.1 into the plot(...) function.
Plots for the results from location y3 and y; are shown here as examples for
examining the results.

Figure 4.4 shows the data along with the posterior distribution of a for ys.
Inspecting the plots, one can see that there are some samples which satisfy |a| >
1, although the fraction of samples is minimal. The uncertainty quantification
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Table 4.1: Samples of « providing evidence of independently stationary process
flows.

Sample Samples Where

Location la] <1
Y1 99.3%
Y2 99.1%
Y3 97.7%
Ya 99.8%
Ys 100%
Y7 100%
Ys 100%

of @ aids engineers in understanding the evidence that a stationary process
generated the data. Looking at the data alone, as the bottom plot in 4.4,
making an assumption without analysis that the data was observed from a
steady state process is not unreasonable.

97.74% of the samples of «

are between (-1,1)

1.2
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Figure 4.4: Plot of results from fitting unconstrained AR(1) model to ys.

Figure 4.5 shows the equivalent plots to those produced for figure 4.4, but for y7
where all samples of o satisfied |a| < 1. Because all samples of « satisfied the
stationarity constraint, the mean of the expected value of the process steady
state conditions can be computed, and are plotted in the top right and bottom
plots of Figure 4.5 for examination, along with the 95% Credible Interval (M.-H.
Chen and Shao 1999). The results in Figure 4.5 appear sensible as there is not
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Table 4.2: Expected value of steady state concentration, given the process is
stationary.

Sample Ely]
Location (mg/L)

m 41.17
Ys 81.64
ys 51.34
Y 41.45
ys 0.02

yr 20.27
Ys 100.43

much variation after the first few data points. Just looking at the data plot one
would likely conclude that the TREE concentration at y; had reached steady
state, similar to the results of the statistical analysis.
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Figure 4.5: Plot of results from fitting unconstrained AR(1) model to y;.

Because all physical sampling locations were deemed stationary, the constrained
AR(1) model was refit to the locations where any sample of « satisfied |a| > 1,
in order to estimate steady state concentrations with Equation (4.3). The mean

calculated E[y|u, |a| < 1] values are shown in Table 4.2.

Results for data fit to a constrained model was plotted again for examination,
and the results to fitting the constrained AR(1) process to y3 is shown in Figure
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4.6. On the top right plot the distribution of the steady state concentration
E[y|u, |@| < 1] is shown, along with the expected value of the concentration as
the orange line and the 95% credible interval as the gray dotted lines. The same
information about the distribution of E[y|x, |a| < 1] is shown on the bottom
plot of the data. The estimates with the real data appear to be a sensible
evaluation of steady state conditions, given that the process is stationary, with
uncertainty quantification.
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Figure 4.6: Plots showing the results of fitting a stationary AR(1) process to y3
with uncertainty quantification of steady state conditions.

4.4 Conclusion

The methods presented in this chapter are not applied with the intention of
perfection. Using the methods outlined for steady state determination the
conservation of moss or correlation of observations is not taken into account.
One would not be able to utilize the methods to estimate steady state conditions
for a process where all mass flows are not approaching steady state.

Instead, what is provided is a method to provide engineers with a consistent
metric joined with uncertainty quantification. Tools are provided to first
determine if one can utilize the data to fit an AR(1) process and predict a
steady state condition. Then, if the process is deemed predictable, one can
estimate steady state conditions and the variance of the estimate.

An engineer operating without similar tools may obtain a point estimate of
steady state conditions without uncertainty quantification. Alternatively, one
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may pick an arbitrary set of points and take an average. When utilizing arbitrary
methods, comparisons between engineers and between processes become closer
to being based in opinion rather than fact. Additionally, methods without
uncertainty quantification do not provide an engineer with uncertainty of their
analysis derived from the results of the statistical method.

This last statement brings to light the question, how would one use the results
from fitting an AR(1) model to their data? Such an answer is likely application
dependent and left to the reader. One possibility is using the mean [y|u, |a] < 1]
with a typical point mass balance. A second would be to either use samples of

[y|p, || < 1] or the data points collected at times when all sampling locations
were found to be within the 95% credible interval with a Bayesian Mass Balance
(§3). Furthermore, one could use the samples of a, p, and 02 and the model
Yr+1 = ayr + 14+ € to generate new data for analysis. All of these options, and
more, could be considered appropriate for particular applications. However, the
key to such an analysis is consistency by deciding on some consistent application
of the statistical methods before data is observed, to ensure a consistent and
fair comparison.
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Chapter 5

Expected Improvement
Optimization of an
Uncertain Process

Abstract

Integrated laboratory testing and process modeling are often used to optimize
metallurgical process operations. While many metallurgical models are available
for commercial processes, observations often differ from model predictions by
some amount of bias. Bias can be related to factors unaccounted for in the model
including mineral speciation, and complex chemical dynamics. Polynomial based
response surface methodology can be used to optimize an unknown funciton,
but suffer from local convergence problems that can make use with design of
laboratory experiments prohibitive. Optimization using Gaussian Process (GP)
regression and the Expected Improvement (EI) criteria has been shown to find
the global optimum of black box functions with relatively few tests. The goal
of this chapter is to explore the utility of using GP regression to find and test
the optimum of a typical laboratory experiment, when process dynamics are
unknown. After overviewing the methods and a biased leaching simulation
based on the shrinking core model, the EI algorithm is repeatedly tested on
randomly generated data sets in a Monte-Carlo experiment. The mean behavior
of this concept shows that EI has the potential to be used as a systematic
method for finding and the optimum of a real process.

65
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5.1 Introduction

Finding the optimum of a complex process is difficult, particularly when func-
tions for adequately modeling such a process are unknown. Response surface
methodology (Box and Draper 2007) is commonly used to model unknown
processes using polynomials, where the response is modeled as some y = X3+ .
When using response surface methodology to find and test the optimum of a
process, one would use a gradient based technique, approximating derivatives
using finite differences in each dimension of X. Gradient based methods may
be infeasible when data is expensive. Due to convergence to local optima,
large numbers of tests with restarts at random locations are required to ensure
convergence on the global optimum (Gramacy 2020).

With the explosion in popularity of machine learning and probabilistic modeling,
one might ask is there a better way? Active learning and Expected Improve-
ment (EI) (Schonlau 1997) has gained popularity in the computer experiments
literature (Gramacy 2020). Additionally EI has been used to optimize real
processes for robotics (Tesch, Schneider, and Choset 2011), polymer synthesis
(Li et al. 2017), and genetics (Gonzalez et al. 2015). This chapter aims to
illustrate how EI can be used to efficiently optimize a real separation process
with few experiments, by showing results on a simulation based on the shrinking
core model (Yagi and Kunii 1955; Gbor and Jia 2004). An overview of previous
optimization work in mineral processing in §5.2. Then, Gaussian process mod-
eling and expected improvement methods utilized for optimizing the leaching
process simulation are provided in §5.3. Results from optimization and average
behavior in a Monte-Carlo experiment are shown in §5.4.

5.2 Literature Review

There are numerous articles on the use of response surface methodology for
modeling and optimization of mineral processes. Aslan (2008) uses response
surface methodology and a central composite design for real gravity separator
data, collecting 20 tests to fit a polynomial. Veglio and Ubaldini (2001) provides
analysis of variance for a real leaching process with data collected using a full
factorial design with 9 experiments. A. Chen et al. (2015) fit a polynomial to a
process recovering platinum group metals from automobile catalysts using 20 real
experiments. Notably, quite a few of these papers have a different definition of
optimization than what is used in this chapter. In these publications, generating
a response surface is seen as part of the engineering progress for making an
improvement. Any optimum found is limited by the complexity of the polynomial
used. As written in this chapter, optimization means finding some specific values
of factors which yield a minimum or maximum value of a function, see §5.3.3.

There are other, more complicated, methods for fitting a statistical model to
real data for optimization available in the literature. Al-Thyabat (2008) uses 40
real world flotation experiments, varying 4 factors, for training and validation
of an artificial neural network (ANN). Notably, the experimental design used in
Al-Thyabat (2008) is a one-shot design. The surrogate ANN is then optimized
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by evaluating the ANN at 100 points which fall along a 4-D line, and picking
the candidate point with the best performance. This technique may have been
chosen to reduce computation time, but fails to fully explore the range of the
input space for an optimum.

Bu et al. (2016) uses 30 sets of flotation experiments to first select a flotation
model which best fits the total data set where four factors are varied. The
theoretical flotation models are fit using a least squares criteria. Then, the
authors use response surface methodology to predict kinetic constants for
the selected model, given a set of input variables, and optimize the process.
Essentially the authors build a polynomial surrogate for the kinetic constants,
and then optimize the full model utilizing values predicted from the surrogates.
This approach takes into account model uncertainty, employs surrogate modeling,
and finds an optimal input, but requires quite a large data set, and cannot
account for any bias between all the models and observations.

5.3 Methods

5.3.1 Gaussian Processes
One can understand a Gaussian Process by first studying the normal distribution,

as shown in Equation (5.1).

1 _ S (y—nw) (5 1)
~ (& v .
Y V2my

A random variable y can be simulated from a normal distribution with a mean
value of p and a variance of v. A random draw from a normal distribution with
u=0and v =1 is shown in Figure 5.1.

Next, examine the multivariate normal distribution (5.2). In the multivariate
normal distribution a N x 1 vector Yy is simulated from the distribution function.
In this case each element has the same mean, denoted by the multiplication of
the scalar p times the N x 1 column vector 1, and the variance v.

N sOn-1ywTry-1ym)
v

Yn ~ (27v)" 2e”

(5.2)

Figure 5.2 shows a draw from a multivariate normal distribution with g = 0 and
v = 1. Importantly, the particular form of the multivariate normal distribution
in (5.2) does not provide correlation between the elements of a single draw of
Yn. Elements of Yy are independent and a draw of Yy is equivalent to N draws
of y from (5.1).

Equation (5.3) specifies the covariance matrix Ky, providing a way to model

correlation between the elements of Y.

-1
1 %(YNleN)TKN (YN —1n#)

Yn ~ (27TV)7%|KN Tze” v (5.3)
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Figure 5.1: Point generated from a univariate normal distribution.
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Figure 5.2: Random vector generated from a multivariate normal distribution
with no correlation between points within a single vector valued draw.
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Figure 5.3 illustrates a draw of Yy from (5.3) with u = 0, v = 1, and a specified
covarience matrix K.
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Figure 5.3: Vector valued draw from a multivariate normal distribution, with
correlations between elements of a vector dependent on distance between the
location of each point on X.

Interestingly, in Figure 5.3, the points that are close to each other on X have
similar, possibly correlated, values of y. In GP regression the elements of
the covariance matrix Ky are calculated as a function of location X. Often,
pariwise distances on X between two elements in Yy are used for evaluation.
The Gaussian covariance kernel, shown in Equation (5.4), is a common choice.
The element of Ky related to locations z and z’ is the exponentiation of the
negative sum of the squared distance between each of the s dimensions of z and
z', scaled by the lengthscale parameter #. Because there are s elements of 6§ the
specific covariance function in (5.4) is called a seperable covariance function, as
opposed to each of the s distances scaled by a single scalar 6.

A o S (ml_xi)Q
kE(x,z") = exp 2791 (5.4)

=1

The plots and equations are interesting, but not yet useful. For utility, a GP
has to utilize real data to make predictions. First, break down the vector Yy
into two column vectors, Y;(x) at location z, and Y3(X) at location X. Both
Yi(z) and Y2(X) can be said to be drawn from a zero mean GP prior with
covariance structure shown in (5.5).
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~ s ’ ’ 5.5
[3”2 (X) 0" koxa Kixox) (55)
Using the Kriging equations (Matheron 1963), given a set of observations Ya(X)

the predictive mean (5.6) and the predictive variance (5.7) at location = can be
derived in closed form.

Y(2) = kf, ) K5 x) Ya(X) (5.6)
K(x) = Vk(x,gc) - Vk(x,X)K()(l’X)k(X,x) (57)

Combining everything in this section so far, given some observations at location
X, and values 6, (5.3) can be rewritten to include the predictive mean and
predictive variance as (5.8).

. AoN-YE)TE (YN T (@)

Yy ~ (270)" % |Ky| 7e” v (5.8)

Draws of Y conditioned on previously observed data and estimates of # and v,
are shown in 5.4. The mean function shown is the same as the predictive mean
(5.6), and the 90% intervals are computed from the normal quantile function
using the predictive variance (5.7).

The take away from Figure 5.4 is that the results from GP regression include a
closed form solution for uncertainty of the fit along with a typical expected value
from a regression technique. The ability to quantify uncertainty in closed form
has allowed for the use of active learning experimental designs for improved
prediction (Seo et al. 2000).

For the previous examples in this section, it was assumed that the data generating
mechanism is deterministic. Doing so provides more clear visuals. When Yy
is observed with noise, it can be said that Yy = f(x) + e¢. To model €, where
noise normally distributed distributed with a mean of zero and constant across
X, a nugget parameter is added to the diagonal entries of K.

This section is meant to be an overview of Gaussian processes, with just enough
details for the reader to understand the Expected Improvement algorithm in
§5.3.3. Much information is left out of this section. The methods in this
chapter utilize maximum likelihood estimation (MLE) of model parameters
and the Gaussian covariance function. For further details on model parameter
estimation and alternate covariance functions see the excellent texts of C. K.
Williams and Rasmussen (2006) and Gramacy (2020).

5.3.2 Shrinking Core Model

The shrinking core model (Yagi and Kunii 1955; Gbor and Jia 2004) can be
used to model a leaching process. The version used to simulate data is shown
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Figure 5.4: A set of random functions generated from a GP conditioned on
data observations, with the mean function and uncertainty quantification via
the 90% interval for the predictive variance shown.

in Equation (5.9), where X, is the recovery of Cerium as a fraction, C4, and
C,p are the concentrations of chemicals A and z respectively, bs and b, are the
moles of solid consumed per mole of A and z reacted, k4 and k, are chemical
reaction rates, p is the molar density of the solid, and r is particle radius.

3
Xeo = (bAkACAb + bzkzozb> (59)

pr

Parameter values used to simulate data are shown in Table 5.1, and the resulting
response surface is shown in Figure 5.5. Notably, the response surface in Figure
5.5 monotonically increasing with increasing acid and additive concentrations,
and therefore optimization is trivial. Furthermore, most models the goal of this
chapter is to illustrate the optimization of a process where a model does not
fully capture the dynamics.

To complicate the optimization a bias function is added to the response surface
generated using the shrinking core model. Responses become y¢ = y,, () + b(x),
where y; are field data observations, y,,(x) is the shrinking core model, and
b(x) is the bias function. The bias function is shown in Equation (5.10), and
the response surface is shown in Figure 5.6.
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Table 5.1: Parameters of the shrinking core model.

Symbol  Value Units
ba 3 mol/mol
ka 0.0008 m/s
Cap variable acid concentration mol/m?
b, 3 mol/mol
k. 0.00001 m/s
Cu variable additive concentration mol/ m?
P 48317 mol/m?
r 0.0001 m3
m pa—
v —
E
©
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b
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Acid (k mol/m®)
Figure 5.5: Shrinking core response surface.
_ Cxp — 100
b= 5000 — 100
_ Cy, — 600
b = 5000 — 600 5.10)
NAb — 0-3> (Uzb - 0-5> '
b(z) = 0.088¢ | —— — | +
(@) ¢ ( 1/0.02 ¢ 1/0.02

0.1

0.1

0.0156¢ (nAb — O.8> é (T]zb — 0.7)

Lastly, to more accurately resemble a real process, random independent normally
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Figure 5.6: Response surface with bias function.

distributed noise with mean zero and standard deviation of 0.05 or 5% is added
to yr. A noisy realization of the response surface is shown in Figure 5.7.

Additive (k mol/m®)

o]

Acid (k mol/m®)

Figure 5.7: Response surface with noise added.
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5.3.3 Expected Improvement

Stating the problem, when one wants to find the optimum as a maximum, they
want to find some z that maximizes a function as in (5.11).

x = argmax f () (5.11)

Utilizing the predictive mean of a GP surrogate to find the optimum as
f(z) = Y(z) would be fairly simple, but would not include any of the available
information about the uncertainty of the fit. Secondly, if one was to maximize
the predictive mean of a GP fit f/(x), they would not be maximizing the true
underlying function f(x), but instead maximizing the expected value of f(z)
given a model structure, estimated hyperparameters, and most importantly
previously observed data. If after finding the x in (5.11) for a given data set,
data is then collected at x, it would be possible to see how accurate the model
was as well as refit the surrogate model to include the new data point. An ideal
optimization algorithm to use in conjunction with a GP surrogate would utilize
the GP predictive variance and be able to adapt to newly collected data.

Expected Improvement (EI) (Schonlau 1997) juggles both the predictive mean
and predictive variance in order to find the global optimum of a function. First
improvement at location x is defined as I(z) in (5.12).

I(z) = max{0,Y (z) — fB°V} (5.12)

Where Y (x) is a random draw from a GP surrogate conditioned on a data set
and fBOV is the best observed value (BOV) from a function. If optimizing a
leaching experiment, after running 10 tests, fB°V would be the best observed
value from the set of 10 experiments. After formally defining improvement as
(5.12), it is possible to define probability of improvement at location x (PI(x)),
given a set of data D as Equation (5.13).

PI(z) = P(I(z) > 0|D) = P(Y(z) > fE°V|D) (5.13)

The statistical expectation of any functionis [f(z)] = [~ f(z)p(z)dz. Setting
f(z) equal to (5.12) it is possible to approximate the expectation of improve-
ment using numerical techniques. However, when a GP surrogate is used, the
expectation of improvement, or EI, can be solved for in closed form. EI for
maximization is shown in Equation (5.14), where Y (z) is the predictive mean
(5.6) and k(z) is the predictive variance (5.7) at location z.

V() — fBO . V() — fBO
El(z) = (Y (z) — f2°V)® (W) + k(z)o (W) (5.14)
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Figure 5.8 illustrates how EI can be used with a GP surrogate and a data
set. After fitting the GP surrogate to the data, the EI criteria is evaluated
along X. In this case a set of X candidates drawn as a latin hypercube sample
(McKay, Beckman, and Conover 1979) are each evaluated with the EI function
(5.14). The X that shows the maximum expected improvement, is selected for
evaluation or laboratory testing.

f(X)

__ Unknown e Data Best Observed

@ Max Expected
Process Value

GP Fit
Improvement

Figure 5.8: Illustration of GP fit highlighting the best observed value, and
the maximum expected improvement as a trade off between probability of
improvement and improvement of the predictive mean over the best observed
value.

EI is able to leverage both the predictive mean and the probability of improve-
ment to find a global optimum without the use of gradients. Additionally, EI
tends to perform better maximizing Y'(x) or probability of improvement alone
(Gramacy 2020). In order to make the EI algorithm adaptable to newly acquired
data, one would take a sequential design, or active learning, approach. First, a
GP is fit to data set Y. Then EI is evaluated on a set of candidate locations,
and the x which maximized EI is selected. Data yx1 is collected at location
Tn+1, and the original GP surrogate is updated to include this new data point.
The process then repeats, sequentially adding data to the GP surrogate until
TN 41 converges on an optimum.

To sequentially add EI points, one must start with an initial set of points. An
eight point maximum entropy design (Shewry and Wynn 1987) is used as the
initial design criteria, with the hopes that a substantial amount of information
can be gained before sequential maximization via EI.

The evaluation of EI for the optimization of a noisy mineral process necessitates
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observing the performance repeatedly. Because each data set is different,
performance will vary for repeated testing. Therefore, a Monte-Carlo experiment
was run after initial observations.

5.4 Results

5.4.1 Single Experiment

To best observe the results of a single optimization experiment, noise is removed
from the response surface. The maximum entropy initial design is shown in
Figure 5.9. The purpose of the points, labeled 1 through 8, is to estimate GP
hyperparameters, set the best observed value, and obtain conditional estimates
of predictive variance and mean across the input space.
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Figure 5.9: Maximum Entropy initial experimental design before EI maximiza-
tion.

Then, the first EI point is added, shown as location 9 in Figure 5.10. The
additional point is a balance between exploration and exploitation, but is not
at the optimum.

Figure 5.11 shows the 15" point added to the set. The EI algorithm has
converged on the global optimum of a complicated multi-modal process.

5.4.2 Monte-Carlo Experiment

As stated previously, results will vary with variable data. To observe the mean
behavior of the EI algorithm a Monte-Carlo experiment was run, by repeating
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Figure 5.10: First point added to data set using EI.
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Figure 5.11: EI convergence on optimum.
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the exercise in §5.4.1 100 times. For each experiment a new initial design
and set of simulated data was generated, and EI was used to sequentially
find and test the optimum. Because the standard deviation of the noise was
5%, a 2.50 allowance was utilized to consider the best observed value to be
the optimum. The true optimum is approximately 83%, and the process was
considered optimized for any observed value above 71%.

Tests Before Convergence
on Optimum

o

40

35

25
|

20

Mean:
17.93

15

o
—

Figure 5.12: Results from Expected Improvement Monte-Carlo experiment.

Figure 5.12 shows the results of the Monte Carlo experiment. The minimum
number of experiments EI required to test near the optimum was 9, and the
maximum was 43. On average, EI found and tested the optimum in 17.93 tests.

5.5 Discussion and Conclusion

In this chapter, EI was utilized to maximize a noisy simulated chemical pro-
cess. The simulation has a basis in chemistry theory, but did not capture
the full relationship between the chemical concentrations and the observations.
The flexibility of GP regression and the trade off between exploration and ex-
ploitation provided within the EI optimization criteria allowed for quick global
optimization.

The use of EI is trivial for this simulation with negligible computation time.
There is certainly utility in using EI to optimize more expensive simulators
used in mineral processing. Moreover, this chapter aims to paint a picture
of how EI can be used to optimize a real chemical process in a laboratory or
pilot plant setting. EI was able to find and test the optimum of a complex and
multi-modal response surface in relatively few experiments. Laboratory tests
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can be expensive and time consuming. When multiple factors are tested, a
full factorial design can quickly become infeasible. Utilizing EI to sequentially
and strategically test the optimum of an unknown process has the potential to
significantly reduce laboratory costs.

While EI has clear advantages for optimizing multi-dimensional complex pro-
cesses, some issues not yet touched upon can be problematic. One issue is
taking a guess at the size of the initial design to use. One wants to use an initial
experimental design large enough to obtain decent estimates of GP hyperpa-
rameters, but not so large as to needlessly expend experimental budget. Second,
while these methods are able to optimize an unknown process, the choice of a
stationary separable GP model assumes that the data will vary accordingly. For
example, in a setting where there were step discontinuities, a non-stationary
GP structure would be more appropriate. Last, but not least, the stopping
criteria used in the set of experiments within this chapter is not realistic. This
example necessitated a comparison to the known true optimum, while the truth
is unknown in application. Before starting the set of experiments, setting some e,

where if |[yBOV — yBOV| < € researchers would assume convergence is necessary.

In this example, the EI algorithm was able to optimize a complex surface, on
average using much less data than the methods in Al-Thyabat (2008) and Bu et
al. (2016). Additionally, when using EI data is collected at the optimum, while
the methods in Al-Thyabat (2008) and Bu et al. (2016) rely on the variable
surrogate fit to find the optimum. Collecting data at the optimum location can
inspire more confidence in the results, however a downside of EI is that the
resulting model has less of a potential for interpretability. For example, the
kinetic constant estimates found in Bu et al. (2016) may be of use to engineers
for future projects. Depending on the purpose of the set of experiments, one
may choose a method that simply finds the optimum, or another that allows
for more flexibility and utility for prediction.

Overall, EI has the potential to perform better than classical response surface
methods for the optimization of an unknown process. The example in this
chapter is not indicative of the the limits for the EI algorithm. Additional work
needs to be completed for optimization of a real process, although simulation
results are promising. Future work in applying EI for the optimization of a
mineral process, can incorporate heteroskedastic GP models (Binois, Gramacy,
and Ludkovski 2018), and data from calibrated process simulators (see §6 for
details on calibration).
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Chapter 6

Active Learning for
Bayesian Calibration of SX
Simulators

Abstract

The Kennedy and O’Hagan (KOH) calibration framework uses coupled Gaussian
processes (GPs) to simultaneously meta-model an expensive simulator (first
GP), tune it’s "knobs" (calibration inputs) to best match observations from a
real physical/field experiment and correct for any modeling bias (second GP)
when predicting under novel conditions (design inputs) in the field. Considering
meta-models, or surrogates, for expensive computer simulation experiments in
isolation, there are well-established methods for placement of design inputs for
data-efficient planning of a simulation campaign. Examples include space-filling
geometric principles or predictive optimality criteria like minimum integrated
mean-squared prediction error (IMSPE). However, analogues for use within the
coupled GP KOH framework, for both calibration and design inputs, are mostly
absent from the literature. Intuitively, space-filling is inefficient because the
computer model is most useful to KOH nearby promising settings of calibration
inputs. Here we derive a novel, closed form IMSPE criteria for sequentially
acquiring new simulator data in an active learning setting for KOH. We then
illustrate that this intuition is correct: acquisitions space-fill in design space,
but concentrate in calibration space. A closed form IMSPE precipitates a closed-
form gradient, which we also provide, for efficient numerical optimization for
acquisition of new runs. We then explore how how this new criteria leads to more
a efficient simulation campaign compared to purely space-filling alternatives in
benchmark problems. We conclude with a showcase of this new method on a
motivating problem involving prediction of equilibrium concentrations of rare
earth elements.

81
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6.1 Introduction

Computer simulation experiments calibrated to real world observations can
can assist in the understanding of complex systems. Examples include biofilm
formation (L. R. Johnson 2008), radiative shock hydrodynamics (Goh et al.
2013), and the design of turbines (J. Huang et al. 2020). The canonical
apparatus in this setting is due to Kennedy and O’Hagan (KOH, Kennedy
and O’Hagan 2001). KOH models field-data from a physical system as the
function of a computer simulation model plus an additional bias correction (see
our review §6.2.3). Computer models are biased because they idealize physical
dynamics and often have more dials or knobs, so-called calibration parameters
or inputs, than can be controlled in the field. So KOH must juggle competing
aims: furnish accurate, bias-corrected prediction for the real process in novel
experimental conditions (i.e., design inputs, shared by both the physical/field
apparatus and the computer simulation) while at the same time tuning good
settings of calibration parameters. Moreover, limited simulation and field data
necessitate meta-modeling. Toward this end, coupled Gaussian processes (GPs,
C. K. Williams and Rasmussen 2006) are used as a surrogate (Gramacy 2020)
for novel simulation, and to learn an appropriate bias correction.

This is hard to do, and in fact there are many recent papers that suggest that
confounding between GP bias correction, GP surrogate, and tuning parameters
creates an identification hazard (Bayarri, Berger, and Liu 2009; Higdon et al.
2004; Brynjarsdottir and O’'Hagan 2014; Plumlee 2017, 2019; Gu 2019; Tuo and
Wu 2015, 2016; Wong, Storlie, and Lee 2017). Nevertheless, the apparatus has
proved highly useful for prediction. We thus take the framework as it is and
focus our efforts here on data collection for efficient learning. Both experiments,
field and simulated, must be carefully designed and modeled to make the most
of limited resources.

Taken in isolation, the design for GP surrogates has a rich literature. Recipes
range from purely random to geometric space-fillingness, such as via Latin-
Hypercube Samples (LHS, McKay, Beckman, and Conover 2000) and minimax
designs (M. E. Johnson, Moore, and Ylvisaker 1990). Closed form analytics from
GP posterior quantities (again see §6.2.3) may leveraged to design optimality
criteria, such as via maximum entropy or minimum integrated mean-squared
prediction error (IMSPE) to develop designs (Sacks et al. 1989). These ideas
may be applied as one-shot, allocating runs all at once, or sequentially via active
learning (Seo et al. 2000), which can offer an efficient approximation to the
one-shot approach due to submodularity (Wei, Iyer, and Bilmes 2015) properties
while hedging against parametric specification of any (re-) estimated or fixed
quantities. This active/sequential approach is generally preferred when possible.
Ultimately the result is space-filling when variance/information criteria are
measured globally in the input space. For a more thorough review see, e.g.,
Gramacy (2020) §4-§6.

Specifically within the coupled-GP KOH calibration framework, literature on
simulation design for improved field prediction within the KOH framework is
more limited. Most are one-shot or are focused on field design rather than
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computer model acquisition. Leatherman, Dean, and Santner (2017) built
minimum IMSPE designs for combined field and simulation data. Arendt,
Apley, and Chen (2016) used pre-posterior analysis to improve identification
via space-filling criteria. Krishna et al. (2021) proposed one-shot designs
for physical experimentation robust to modeling choices for bias correction.
B. J. Williams et al. (2011) explored entropy and distance-based criteria in
an active learning setting for the field experiment. Morris (2015) similarly
study the selection of new field data sites, but in support of computer model
development. None of these address a scenario where (new) field measurement
is difficult/impossible, but new simulations can be run.

Ranjan et al. (2011) provide some insight along those lines, comparing reduc-
tion in field data IMSPE for surrogate-only designs. They found that new
batches of simulations should involve design inputs closely aligned with the
field data, paired with random calibration input settings. They stopped short
of offering a recipe for choosing new acquisitions for simulation across both
spaces simultaneously. We suspect that this may be because they did not have
a closed form criteria that could easily be searched for new acquisitions. One
such criterion is our main deliverable in this paper.

We study the coupled GP setup of KOH, define an IMSPE criteria for field-level
predictions as a function of novel computer model runs, and show how the
integral (the I in IMSPE) can be evaluated in closed form. Although similar
analytic expressions for IMSPE have been developed in related contexts (e.g.,
Leatherman, Dean, and Santner 2017; Binois et al. 2019; Wycoff, Binois,
and Wild 2021), we are unaware of any targeting computer model runs for
improved KOH prediction. One advantage of having a closed form, as opposed
to using quadrature or Monte Carlo integration, is that gradients can assist in
optimization for new acquisitions. We additionally provide those in closed form
so that finite differencing is not required.

Using our new KOH-IMSPE criterion, we reveal novel insights about which
additional simulations lead to improved prediction. Rather than “matching’
field data design inputs and being “random” on calibration parameters (Ranjan
et al. 2011), we show that the criterion actually prefers being far previous
simulations, but not too far from promising calibration parameters. In other
words, it prefers to space-fill, modulo not entertaining calibration settings that
are unlikely given current KOH model fits. We argue that this makes more
sense than putting novel runs near field data, at least for prediction purposes.
In any case, one quickly runs out of “matching” locations in the typical setup
where simulation sizes dwarf field data observation, and “random” is an easy
straw man to improve upon.

)

Although our contribution is largely methodological, we were motivated by an
industrial application involving the extraction of rare Earth elements (REE), a
significant portion of which are allocated to high growth green technologies, such
as battery alloys (Goonan 2011; Balaram 2019). REEs include elements from
the lanthanide series, Yttrium, and Scandium (Gosen et al. 2014). Liquid-liquid
extraction, also known as solvent extraction (SX)m processes are often used to
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concentrate rare earth elements (C. K. Gupta and Krishnamurthy 1992) from
natural and recycled sources. SX leverages the differing solubilities of various
elements in organic (oil) and aqueous (water) solutions to make a separation.

Testing SX plants can be expensive due to the time required for the process to
reach a steady state, and the difficulty of directly controlling some explanatory
variables in a cost effective manner. These constraints render an active learning
design for a SX plant at best difficult and at worst infeasible. Gathering
data on elemental concentrations across the organic and aqueous phases is
much easier than in greater generality. Prediction of SX equilibria clearly can
benefit from the additional information provided from a simulator within KOH
calibration. However, the high dimensionality of the simulator parameter space
and necessity to numerically solve systems of differential equations prohibits
exhaustive evaluation. Active learning to seek out promising runs for accurate
real/field prediction with a limited simulation campaign is essential. We believe
that our KOH-IMSPE is a perfect match.

With the ultimate aim of providing evidence in that real-data/simulation
setting, the remainder of the paper is organized as follows. In §6.2, we review
the elements in play: GPs, KOH, and sequential design. Our KOH-IMSPE
criteria is developed and explored in §6.3. §6.4 provides implementation details
and an empirical analysis of KOH-IMSPE in a sequential design/active learning
context. §6.5 details our application for an experiment studying extraction of
REEs. We conclude in §6.6 with a brief discussion.

6.2 Review of basic elements

KOH calibration couples GP surrogates with GP bias estimation, and our
contribution involves active learning via IMSPE. Our review of these elements
begins with GP regression, design for GPs via IMSPE, and the KOH apparatus
with an eye toward their integration in §6.3.

6.2.1 Gaussian Process Regression

Generically, GP modeling means that a random variable of interest, like vector
an N x 1 vector of univariate responses Yy = Y (X) at a N X p design of inputs
X, follows a multivariate normal (MVN) distribution Y ~ Ny (u,2). In a
regression context, where we may apply a GP as a surrogate for computer model
simulations Y (X), it is common to take p = 0 and move all of the modeling
“action” into the covariance structure X, which is defined by inverse distances
between rows of X. For example,

Yy ~ Ny (0,vK (X))
where

S

(wi — v7))°
K(X)” = k(l’i,l'j) = exp —Z T + 5(1:])9

=1
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Our specific choice of kernel k(-, ) and the so-called “hyperparameterization”
(via v, g and ) is meant as an example only. There are many variations,
and our contributions are largely agnostic to these choices. When viewing
(Yn, X) as training data, the MVN in Eq. (6.1) defines a likelihood that can
be used for inference for any unknowns. Textbooks cover many more of the
details than are needed here (C. K. Williams and Rasmussen 2006; T. Santner,
Williams, and Notz 2018; Gramacy 2020). Often, computer model simulations
are deterministic, in which case the so-called a nugget parameter g is taken as
zero (or small g = e > 0 for better conditioned K (X)).

Regression, i.e., deriving a surrogate for new runs x, is facilitated by extending
the MVN relationship in Eq. (6.1) for Yy to Y (z). Below, z is a N’ X p matrix,
but we may take N’ = 1 for simplicity in many cases.

Y(z) 0 k(x,z) k(z,X)
) e ([ ) e
Observe that we are using k(z, X) now, for cross-kernel evaluations between

rows of z and rows of X such that K(X) = K(X, X). Then, standard MVN
conditioning reveals Y (z) | Yn ~ N+ (un (), En())), where

pn () = k(z, X)TK(X) 'Yy En(2) = vk, —k(z, X)K(X) 7 k(X, 2)).

(6.3)
These are known as the Kriging equations (Matheron 1963) in the geo-spatial
literature, and they can be shown to provide the best linear unbiased estimator
(T. Santner, Williams, and Notz 2018), among other attractive properties.

The top panel of Figure 6.1 shows a GP fit regressed onto a data set collected
from an unknown function. The draws from the GP shown in grey. The
analytical mean and variance can be simply evaluated as (6.3), and are included
as the predictive mean and 95% confidence interval (CI). The bottom panel
of Figure 6.1 shows two metrics for GP uncertainty quantification, and how
these metrics can align with data locations. The value for predictive variance is
plotted, analogous to the 95% CI shown in the top panel. For this deterministic
example, predictive uncertainty is 0 for a location where data has already been
observed. Integrated mean squared prediction error (IMSPE) is shown on the
same plot, calculated as a function of x where x is augmented to the design
matrix. Further details and comparison ensue in §6.2.2.

6.2.2 Integrated Mean Squared Prediction Error

One can imagine using those predictive equations (6.3) towards many ends:
simply predicting at novel x not coinciding with training runs X; deducing
where Y (x) might be minimized, or so-called Bayesian optimization (BO, Jones,
Schonlau, and Welch 1998); exploring which coordinates of x most influence
Y(z) (Marrel et al. 2009); to name just a few. Here we are interested in
sequential experimental design, or active learning, to select new runs for an
improved fit/prediction.

The simplest variation on this theme is to choose z7,,, = argmax, ¥y (),
i.e., to maximize the predictive variance. Here x and z7%,; represent a single
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Figure 6.1: top: GP regression predictive mean, and predictive variance quanti-
fied as 95% CI, and GP draws, given a set of data. bottom: Gaussian process
uncertainty quantification as related to data locations. For the same GP fit
and data set as the top pannel, the quantity of predictive variance is plotted
as a function of z. IMSPE values are shown as a function of z, where x is
augmented to the initial data set and IMSPE is calcluated conditional on current
hyperparameter estimates.
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N’ = 1 X p coordinate vector in the input space X, but the idea is easily
generalized to larger batches. MacKay (1992) showed that such acquisitions
lead to so-called (approximate) maximum entropy designs in the context of
neural network surrogates, and Seo et al. (2000) extended these to GPs naming
the idea ALM. Despite their simplicity, convenient closed form and analytic
gradients (not shown) for efficient library-based numerical optimization, ALM-
based sequential designs are aesthetically limiting as they tend to concentrate
new runs on the boundary of the input space X'. This is inefficient for prediction,
the boundary is very important to the application at hand.

If prediction accuracy over the entirety of the input space X, is desired then it
may help to have a criteria that more squarely targets that objective. Sacks
et al. (1989) proposed the integrated mean-squared prediction error (IMSPE)
criterion, encapsulated generically as follows.

A~

IMSPE(X) = /X Sn(z) do (6.4)

Above, x is 1 X p so that the integral is p-dimensional. One could use this
criteria to chose an entire N X p design X in one shot by optimizing over all Np
coordinates as in X* = argmin y ¢y~ IMSPE(X), or to simply augment X with
a new row x,41 sequentially, in an active learning setting. Independetly, Cohn
(1994) developed a similar criteria neural network surrogates and one-at-a-time
acquisition, approximating the integral as a sum; Seo et al. (2000) extended
their work to GPs, dubbing this ALC. Several other authors have considered
variations in-between and specific surrogate modeling settings (see §1).

Here we follow the mathematics laid out by Binois et al. (2019), who provided a
closed form for IMSPE and gradient when X = [0, 1]P. Their interest, like ours,
was in active learning (i.e., acquisition of z 1) although their development
is equally applicable to one-shot and batch design. The approach is at once
elegant and practical in implementation, and consequently has spurred a cottage
industry of variations (Wycoff, Binois, and Wild 2021; Cole, Christianson,
and Gramacy 2021; Sauer, Gramacy, and Higdon 2021) of which our main
contribution can be viewed as yet another. The derivation first relies on the
trace equality tr(ABC) = tr(BCA) to reorder the matrices in the predictive
variance equation. The integral can be moved inside and outside of the matrix
trace as both are linear operators. Because for this setting the elements
of x are independent and occupy a uniformly rectangular space, we can let
W(X) =W(X,X) = [j; 30 (X, 2)k(X, x)" dz be an N x N matrix which has
a closed form for several choices of kernel k(-, ). A proof treating = as a random
variable, in turn treating IMSPE as the expectation with respect to = of the
predictive variance can be found in Binois et al. (2019). Given the integral
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W(X), it may be shown that

IMSPE(X):/ vk(z,z) — vk(z, X) " K(X) k(X z) dz
[0,1]¢

:y—/ tr (VK (X) " Lk(X, 2)k(, X)) da (6.5)
[0,1]4
=v—v1T (K(X) ' oW(X))1

To provide easier intuition for further derivations and maintain consistency
with Binois et al. (2019) we simplify the expression using the trace identity
tr(AB) = 17(A o B)1, where 1 is a vector of ones with a length equal to the
number of rows of X, and o is the Hadamard product, or element wise, product.
Although it may be the case that estimates for v involve (X,Y’), the typical
development presumes that we don’t have Y-values yet, or at least not yn1 in
the active learning context. Consequently, it is equivalent to choose

TNyl = argminz (K(X) "o W(X)) where X = [X;2 7], (6.6)

xz€[0,1]4 i
i.e., where X is augmented with the new row z . In this way, the acquisition
explicitly target predictive accuracy by minimizing mean-squared error. One
consequence of this is that acquisitions avoid boundaries of X = [0, 1]¢ because
that set is a mere manifold relative to the interior of the region being integrated
over.

Returning to the bottom plot in Figure 6.1, a comparison between the points
with the maximum predictive variance and how an additional data point will
change the average predictive variance can be made. A point that is added
at the left side of the plot, where the predictive variance is highest, will not
necessarily minimize the integrated predictive variance if augmented to the
current data set. A maximum predictive variance active learning criteria tends
to add points at the border of the input space (Gramacy 2020). Adding a point
at the location of highest variance, improves the predictive accuracy at that
location, but not the average predictive variance across the input space. In fact,
the point which will minimize IMSPE, shown on the plot, can at times be near
other observations.

6.2.3 Simulator Calibration

A simple example of a simulator, taken from Gramacy (2020), would be a
physics based model that predicts how long a ball would take to drop from a
given height, neglecting wind resistance. The model, t = 1/2h/g, can be freely
evaluated for positive values of both h, and g. However, in the real world h
is a variable that can be easily controlled, while acceleration due to gravity g
is a tuning parameter for the model and is not something that would change
between experiments. Calibration would be the act of estimating g using a data
set containing the time for a ball to drop to the ground from various heights.
We want to estimate some constant g, to predict values for ¢t. To learn about
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the simulator for calibration, and how the output varies with changes in g, it is
necessary to evaluate the model for differing values of g.

In thinking of a simulator, or computer model, in this way ¢t = f(h, g), we can
think of the inputs to the model as some subsets of X, equivalently f(h,g) =
f(X). However, for a general case black box computer model we choose the
notation Y, (x) = f(z,u), where Y;,,() is the output from a computer model,
and x = [z,u] where z is the subset of = pertaining to the observable factor,
equivalent to h in the simple example, and u is the subset of = pertaining to
the calibration parameters, equivalent to g in the simple example. To simplify
notation, future references to x and X include both the z and w subsets, while
for the case when specificially z or u are specified, the derivation only is related
to the relevant subset of x.

The Kennedy and O’Hagan calibration framework (KOH) (Kennedy and
O’Hagan 2001) assumes real field observations at location z, Y;(z) are simulated
from a computer model with v = u*, the true value of u, plus some unknown
bias b(z) function of z, and Gausian error € (6.7). Given the computer model
Y (2z,u*), Yy(2), and assuming normal error with a zero mean, b(z) can be
written as Equation (6.8).

Yi(2) =Y (z,u*) + b(2) + € (6.7)
—
b(z) =Ys(2) — Yo (z,u*) + € (6.8)

A GP prior on (6.8) can be used to estimate the unknown functional form b(z),
with the covariance matrix K2, given a set of field observations Y; at data
locations Zn,x, and the output of a simulator at the same locations Zy, x, at
calibrated value u = 4.

b(z) ~ (2mv) = |K”| 7% exp ( (Y = Yu(Z,0))"(KP) " (Y = Yin(Z, ﬁ)))

(6.9)

B 2VB

If the computer model is expensive to evaluate, a GP emulator can be fit to a
N, x 1 vector of observations Y,, at a set of locations [Zn,, xr, Un,, xp]- The
observation Y; can then be treated as a sum of Gaussians. The covariance
matrix for all observations, Yy and Y}, can be written as (6.10).

KM +vpKP vy KM
ov (| Xr|) = |vmBrs t e UM fm (6.10)
Y VMKm,f VMKm,m

vy and K M are the GP scale parameter and covariance matrix for the computer
model process. vg and KP are the GP scale parameter and covariance matrix
for the bias process. Here we take the computer simulation to be deterministic,
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meaning the nugget in K, gy = 0, and use b(x) to model homoskedastic
noise by adding gp to the diagonal of KZ. The subscript m indicates computer
model data at locations [Zn,, xr, UN,, xp, While the subscript f indicates field
data at locations [Zn,xr, 1n; ® @l1xp], where 1y, is a column vector of ones
with length Ny and ® is the Kronecker product. Important to note, only data
locations in Z are utilized to evaluate KZ.

Kennedy and O’Hagan (2001) utilized fully Bayesian inference for joint esti-
mation of computer model GP hyperparameters 6j;, bias hyperparameters 65,
gB, and the distribution of . However, such a flexible approach can cause
identifiability issues with 4, and has motivated the use of the modularization
approach to KOH (Tuo and Wu 2015). Modularization first trains the computer
model GP on only Y,,. Then, the bias can be modeled as illustrated in Equation
(6.11), allowing the bias GP hyperparameters and 4 to be jointly estimated
conditional on Yy, (x).

b(z) =Yy(2) — Yo (2,0) + ¢ (6.11)

6.3 KOH-IMSPE

The statistical contribution of this work is to derive a closed form IMSPE
sequential design criteria for acquiring additional computer simulation data for
the purposes of minimizing IMSPE of field predictions. We term this IMSPE
sequential design method for use within the KOH framework as KOH-IMSPE.
First, augmenting a field prediction to the KOH covariance (6.10) provides
(6.12), where we choose the notation such that x; is the combined z,u space;
Ty = [lera ’&lxp]~

M B M B M
yr(xy) ”M’“% an T ”Bkgf,zn ”M’%fjvp + VB’“(z_féﬁ VMk(‘”nZ m)
ov Yy = | MK}, - VBK(f.,y  YME(f g + vpK” v KI<V.§,m>
Ym VMK () vmE G gy UM (1 m)

(6.12)

Next, the predictive variance for the field data conditioned on both the field and
simulator observations (6.16) can be derived in a similar fashion to Equation
(6.3). To derive IMSPE in a comparable fashion to (6.5), first let:
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M
vvkar = v [k(f’mf)] (6.13)
KM '

(m7$f)

kB
I/BkB =UVpB |: (()f’zf):| (614)

Nm

I/MK(]VIﬁf) +I/BKB I/MKM

£.m)
o VMKAJ ] (6.15)

Ky = [
(m, f) (m,m)

Wa,p = /kakg“d:cf

Which produces the predictive variance from for field data form the covariance
matrix (6.12), shown as (6.16).

of(xs) = VMké\ﬁfvxf) + VBk(BZhZf)* (6.16)
r " .
[varkar +vBks| [Ku,s] ' [varkn + vBks|

Then, the quadratic form in O’J% (x¢) is expanded and then the trace identity
tr(ABC) = tr(BCA) is used to rearrange terms (6.17). Then we integrate over
x ¢, which is only contained within the k.k7 matricies and IMSPE is calculated
as a sum of these integrals weighted by the scales v, vp and the elements of
the covariance matrix K p as in Equation (6.18).

IMSPE = /afc(xf)dxf

=VM+ VB — /tr (K];[}B (VJQ\/[k‘ng/[
+ vnvskaukd + vavskekly + u?ngkg)) dr;  (6.17)

=Vvpy +VB — lTK]\_/Il,B o (Vﬁ/[WI\/I,M + QVN[VBWM,B + V%WB7B) 1
(6.18)

For augmenting the existing computer model design with a new proposed
computer model point &, = [Z,, @y, the additional elements in (6.12) related
to the computer model design are updated to include Z,,, similar to (6.6). Just
like implementation in Binois et al. (2019), derivatives can be provided for
a gradient based search of the Z,, which minimizes IMSPE of the field data.
The derivative of IMSPE with respect to element [ of &, is shown in (6.19).

The additional computer model point &, has no effect on Wp g, and therefore
3WB B

S =0.

a(wnz)l
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AIMSPE K/
— =17 (ﬂ o (viWarm +2vmvsWirs +vEWs B) +

0 07
_ oW v W B
KM1-|-1_.B o (ng o3, + 2upvR 8&’:;. 1

(6.19)

6.3.1 Illustration

KOH-IMSPE is first demonstrated on a toy 1-D Z and 1-D U space with a
sinusoidal computer model (6.20), the polynomial bias function (6.21), and
field data generated as (6.22) where € ~ N/(0,0.1%). The left plot of Figure
6.2 displays the computer model evaluated at u = u* as well as E[Y}(z)]. The
righthand side of Figure 6.2 shows the computer model evaluated at various
settings for u.

Ym(z,u) = sin(10z, u) (6.20)
1 2
b(z) =1— 37 §z2 (6.21)
T
Yr = ym (50" = ) +b(2) +e (6.22)
Ym(zu)
w | — ElY4z)] w |
o _| o |
> 3 S A
o _| o |
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Figure 6.2: True surface, model surface with u*, and effect of varying u on the
model surface.

Next an experiment was run to test KOH-IMSPE on the toy data generating
mechanism. A 10 point, 2-D latin hypercube sample (LHS) (McKay, Beckman,
and Conover 2000) was used for the initial computer model design in [Z, U] space.
Field data was collected as two replicates of five unique locations on an equally
spaced grid on Z. Then, the modularization approach to KOH was used to find
the maximum a-posteriori (MAP) estimate all hyperparameters and %, where
each p(f) = Gamma(3,2), p(65) = Gamma(3,5), and p(u*) = Beta(2,2). In
total, 21 computer model points were added to the initial design.
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Figure 6.3 shows KOH-IMSPE surface plots for N, = 10, 11, 12, 15, 20, 30 as
well as the initial model design, the points previously added via KOH-IMSPE,
the location of u* as a grey line, the location of field data given an estimate of
i, and the minimum KOH-IMSPE point for the provided N,,.

Nm=10, Njmspe =0 Nm=11, Njyspe =1

0.0
o |
0.0
|

A

e Initial X +  IMSPE acquisition %  Min IMSPE X Ziu u* |

Figure 6.3: KOH-IMSPE surface in Z,U space as points are sequentially
added to an inittial computer model design. Red indicates lower values and
white/yellow indicates larger values.

Notably, Figure 6.3 shows computer model points often added near @, although
time to time KOH-IMSPE points can be more exploratory. Intuitively, this
makes sense. If one wanted to better understand the response of a simulator
for real world prediction, it would be sensible to acquire data points when the
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simulator is calibrated. However, the reason for this behavior is not immediately
clear.

Digging into the derivatives of KOH-IMSPE provides some insight. First, we
will use the identity ag—: = —U_lg—gU_l. Then the first term in Equation
(6.19) can be rewritten as Equation (6.23).

OKn11,B _
Z T;LOKMEFLB (V§/1W1V1+1,M+1 + 2upmvEWars1,B + vEWn B) KMlH,B
4,J
(6.23)
K41, can be written as (6.24).
M M M
KM‘f) K(f, ) k&; ) K Onyxn,  Onpxa
Ky, =vum 5\4 5 Konm) Fons | TvB |ON.xN; ON,xN,. On,.x1
kG g k‘(z m) ké\g 5) Oixnvy  Oixn,,  O1xa
(6.24)
Tt is easy to see that differentiating (6.24) with respect to u produces a matrix
of mostly zeros. Furthermore, for the Gaussian kernel, @ = 4, M{Jg# can be

written as (6.25). Specifically, the vector in the first row and third column of
the block matrix layout, its transpose in the thrid row and first column are
equal to zero when @ = .

Oy x Ny ONyx N, Onyx1
Okim 5.y
aKM+1B - N ONmXNf ONMXNm Tf
~ H(@=1) =vy N x1
au aké” ) m
O1x N, ( 5 ) O1x1
1X Nop
(6.25)
s Ok(je) _ _ 2(i—i) SN2 , :
Diving deeper, —5z= = —=4——"exp (—(@ —@)?/0xr). Therefore, in Equation

(6.23), many terms in the sum are zero when @ = @. However, the fact that this

portion of the w : (@ = 1) derivative is not equal to zero allows for
some exploratory behavior.

The second term in Equation (6.19) differentiates each W. .. Similar to C{)Klg#
OWnreraer g IWhe1s ypelated to 1 are zero. Furthermore, for

elements of an

ou ou
the Gaussian kernel, when @ = @ all elements of each 8?;‘“ are equal to zero.
The location of minimum IMSPE regarding U space is therefore a trade off

between @ — 4 and the correlation between @ and existing model data locations.
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6.4 Implementation and benchmarking

6.4.1 Details

Code was written in R to implement KOH-IMSPE for all examples. Functions
from both the 1aGP (Gramacy 2016) and hetGP (Binois and Gramacy 2021a)
packages were used to find MAP estimates of hyperparameters, to build covari-
ance matrices, and evaluate integrals when appropriate. The modularization
approach to KOH (Bayarri, Berger, and Liu 2009) was used in an effort to
reduce identifiability issues. Independent inverse gamma priors were used for
all lengthscale parameters as well as the nugget for the bias model. A Beta(2,2)
prior was used for each element of u. To reduce computation time and simplify
implementation relative to fully Bayesian Markov Chain Monte-Carlo param-
eter estimation, the MAP of of all hyperparameters and u were found using
optim(...) routines.

Integration to find each W.. can at times be tricky due to the use hyperpa-
rameters from two different kernels and the differing treatment between when
integrating over X and U. When covariance functions are of the same form and
utilize the same hyperparameters, integrating with respect to the dimensions
of Zy is equivalent to the methods provided in Binois et al. (2019). Because
we utilize the point estimate @ for both predictive and observed field data
and a distance based kernel, integrating over Uy simplifies into a value of 1 or
the multiplication of covariance functions. Integration details are provided in
Appendix C.1.1.

To reduce computation time in the search of Z which satisfies (6.6), gradients
were found analytically and supplied to optim(..., method = "L-BFGS-B").
Gradients of all W, 3 matricies are also provided in C.1.1. Additionally block
matrix inversion (Bernstein 2009) of K ps41,5 was utilized to remove the necessity
of inverting the full covariance matrbl( for every KOH-IMSPE evaluation. Details

8KZM+1,B

52— are provided in Appendix C.1.2.

for block matrix inversion and

In implementation, we encountered numerical problems, particularly related
to finding KJ\_41+1, g, which led to computation of negative KOH-IMSPE values
as well as errors reported from the output of optim(). These problems were
solved by using a few numerical tricks. First we took the average of the com-

T
puted symmetric matrix KA_/IlB as KA_/I%B = <K;}B + (KJT413> ) /2. Second,

when computing the inverse of matrix A, multiplied by vector b, instead of
computing solve(A) %*% b we calculate solve(A,b). The latter function has
the advantage of solving for n? terms instead of n3 terms. Big data GPs may
further benefit from the similar, although more complex, methods in (Gardner
et al. 2018). Lastly, to improve the stability of the optim() function we elect
to minimize log(KOH — IMSPE) with an appropriate update to the gradient
and set optim(..., control = list(pgtol = 0.5)).

Figure 6.3 illustrates how the IMSPE surface can be fairly flat. To make the
best of a random start optimization scheme, we first evaluate KOH-IMSPE for
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a number of candidate points generated via LHS. We then use optim() as a
local optimizer on the minimum 7.5% of KOH-IMSPE evaluations. The choice
of 7.5% is an arbitrarily chosen compromise between computation time and
thoroughness of the search.

6.4.2 Sinusoid

To validate KOH-IMSPE, the method was tested and compared to a space filling
LHS design and a design where data was acquired randomly using a Monte-
Carlo (MC) experiment. We first compared performance using the sinusoid data
generating mechanism introduced in §6.3.1 with v* = £ and € ~ N(0,0.22).

1,000 MC repetitions were completed during this evaluation.

The constants between each MC repetition included the priors on the model
lengthscale elements p(63;) = Gamma(3/2,2), and the bias hyperparameters
p(6p) = Gamma(3/2,5), p(9p) = Gamma(3/2,7). Two replicates of 10 field
data points, evenly spaced on a grid, were collected, providing 20 field observa-
tions in total. For each design method in each experiment the initially N, = 10
and the final computer model design size was N,,, = 50.

Between each MC repetition values of field observations varied due to the
random noise added to the expected response. Additionally, the initial design
for computer model varied. A 10 point random subset from a 50 point LHS
was used as the initial design for each method to ensure all three methods had
the same starting point within a MC repetition. For the LHS design method
the remaining 40 points from the initial 50 point LHS were sequentially added
to the computer model design. The KOH-IMSPE method added points to the
initial 10 point computer model design based on the KOH-IMSPE criteria. The
random design method sequentially added uniformly random points on X to
the computer model design. In each method, after a additional computer model
point was acquired, estimates for GP hyperparameters and @ were updated and
root mean squared error (RMSE) on an n; = 100 point LHS testing set sans
noise. RMSE was calculated as shown in Equation (6.26), where [yp(z;)] was
obtained from the data generating mechanism and jgp(x;) is the GP predictive
mean at location x;. To improve convergence of GP hyperparameters, the search
for the MAP estimates of 6,7, 8 and gg were initialized at the previously
estimated values when available.

N

RMSE = | 3" [yr(e)] ()2 (6.26)
ti=1

The results are shown in Figure 6.4 with the left plot containing the mean
RMSE and 90% quantiles over the 500 MC experiments for each method. The
box-plot in Figure 6.4 shows a box-plot for N,, = 22, chosen because when
N,, = 22 there is the largest difference between the the mean best performance
and worst performance over the three methods.
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Figure 6.4: Mean RMSE and 90% quantiles for sinusoid data generating mecha-
nism using IMSPE design, LHS deisgn, and random design.

Figure 6.4 shows high variability in the results, possibly due to the large amount
of noise relative to the signal. However, on average KOH-IMSPE performs
better than the competitors with less variability in the results.

6.4.3 Four Dimensional Problem

As a second test of the methodology, a similar MC test scheme is repeated on a
larger toy problem with a 2-D X and 2-D U space. The problem is taken as a
simplified version of the example found in Section 3.1 of Goh et al. (2013), and
originates from (Bastos and O’Hagan 2009). The computer model (6.27), bias
function (6.28), and field data generating mechanism (6.29) are shown below.
Field data is generated using u} = 0.2, u3 = 0.1, and € ~ N(0,0.25%). A plot of
the response surface at u = u* is shown in Figure 6.5.

1\ 1000u; 23 + 190022 + 2092z, + 60
m(zu) = (1- - 6.27
Ym (2, ) ( P ( 222)) 100223 + 50022 + 42, + 20 (6.27)
1022 + 422
b(z) = ——+—"% 6.28
%) = 5022 + 10 (6.28)
Yr = Ym (2,0 =10.2,0.1]) + b(2) + € (6.29)

The MC experiment was run in a similar fashion to the methods in 6.4.2. 100
MC repetitions were used for the experiment comparing KOH-IMSPE, LHS,
and random computer model designs. For each method, an initial N,, = 30,
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Computer Model Surface Bias Function Surface
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Figure 6.5: Response surface of the computer simulator for u* = [0.2,0.1] (left)
and the bias function (right)

and 100 computer model points were added until N,,, = 130. New field data was
collected every MC repetition. Field data was collected at 25 unique locations
on an evenly spaced grid in X € [0,1]2. Two replicates at each field data
location were used making Ny = 50.

The initial computer model design for all three methods is a 30 point subset
of a 130 point LHS, unique to each MC repetition. The LHS design method
sequentially added each of the remaining 100 points of the initial 130 point LHS,
while the random design method added uniformly random points in [0, 1]*.

Priors for hyperparameter elements were held at a constant and cho-
sen to be p(fy) = Gamma(3/2,5/4), p(fp) = Gamma(3/2,5/2),
p(gp) = Gamma(3/2,1/20). After each computer model data point
was acquired, hyperparameter estimates and @ were updated, and RMSE was
calculated using the expectation of 1000 field data points chosen using a LHS
unique to each MC repetition. The hyperparameter initialization strategy used
in 6.4.2 was used again to improve convergence.

Figure 6.6 shows the results over the 100 MC repetitions. The left plot shows
mean RMSE and 90% quantiles, while the right box-plot shows the variability
in the results at the N,, when there is the largest range in the mean RMSE
values. The performance difference for KOH-IMSPE in this higher dimensional
example is more obvious than the sinusoid problem. Variance in RMSE over
the MC reps is much less than the space filling alternatives.
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Figure 6.6: Mean RMSE and 90% quantiles for X € [0,1]?, U € [0,1]* data
generating mechanism for IMSPE design, LHS deisgn, and random design.

6.5 Solvent Extraction Kinetic Modeling

There are many ways to model the chemical reactions which take place as part
of a solvent extraction process. The law of mass action is shown by Equation
(6.30) and Equation (6.31), taken from L. Chen et al. (2010), and can be used
to model chemical kinetics. Equation (6.30) specifies a single reaction with
reactants which could be Ry, Rs, ..., R,,, which have stoichiometric coefficients
71,T2,...,Tm, and products labeled similarly from a set of size n. k is the
rate constant of the reaction. The reaction rate of Equation (6.30) is given in
Equation (6.31) as a differential of a reactant or product concentration with
respect to time. A system of differential equations for multiple reactions and
all reactants can be derived by summing over all reaction rates found using
Equation (6.31).

MRy +roRy + -+ 1 R LA pPL+paPo+ -+ p, Py (6.30)
———7:—7:]{"er 6.31
" r; dt p;  dy l_1[ 1 ( )

For a rare earth element, or trivalent metal, in either the aqueous or organic
phases, the reaction shown in Equation (6.32) (C. K. Gupta and Krishnamurthy
1992) can be used to specify a set of differential equations which model elemental
concentrations in solution. [RE‘H] aq 1S a rare earth ion in the aqueous phase,
[(HA)2]org is an organophosphorous acid, such as tri-butyl phosphate, in the
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organic phase, [RE(HA,)s3]org is a rare earth element bound to the organophos-
phorous acid in the organic phase, and [H*],, is a hydrogen ion in the aqueous
phase released as part of the forward reaction.

[RE**]aq + 3[(HA)2]org =— T [RE(HA,)3]org + 3[Haq (6.32)

For a set of trivalent metal ions M;, M, ..., M, ions in solution, the following
constraints can be implemented to mass balance the set of differential equations.

[H]; = [HaAp], — [H +]0 + [HaAz]o (6.33)
[HaAs]e = [HaAslo + 32 (HA2)3]o — 32 (HA3)s (6.34)
[M;;(HA2)s]: = [M;(HA2)s]o + [M3 ] — Mo (6.35)

Where (6.33) is the balance around H', (6.34) is the balance around HAq,
and (6.35) is the balance around each of the j metals M,;. Additionally the
subscripts of brackets [-]; and [-]o indicate concentrations at time ¢ and initial
conditions respectively. The constraints above can be used to produce a set of
p differential equations, substituting the above constraints in for [HT], [HaAz],
and [M;(HAz)3] when possible. The differential equation for the ;' differential
equation is shown in Equation (6.36).

O[My]

5 = = ki [M; (HAR)s [H]? — k5 [M;][HaAg)? (6.36)

The set of j differential equations can then be solved numerically to estimate
concentrations in both the aqueous phase and organic phase given a set of
initial conditions. Using Runge-Kutta can be computationally expensive given
a small step size, motivating the use of a GP to approximate the output of the
simulator.

However, for many reasons, the model just outlined is likely wrong. The reaction
order shown in (6.36), is actually unknown and is typically estimated through
experimentation (Espenson 1995). The reaction order cannot be proven, only
disproven (Espenson 1995). Additionally, the model above is a notable mis-
specification, as it assumes the simultaneous collision of three molecules, an
event which has a probability approaching zero (Arnaut and Burrows 2006). To
account for single molecule collisions, the reaction in (6.32) has to be broken
down into a set of elementary chemical reactions. An example of a model
utilizing only elementary reactions is included in Appendix C.2.1. The model
using elementary reactions requires a larger number of kinetic constants, six per
M;. Additionally, a set of elementary reactions is not always equivalent to the
overall reaction when modeling kinetics (Temkin, Zeigarnik, and Bonchev 1996).
Further adding to complexity, the set of elementary reactions are unknown and
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necessary to infer (Arnaut and Burrows 2006; Temkin, Zeigarnik, and Bonchev
1996).

For the solvent extraction modeling problem, the set kinetic constants are
the simulator tuning parameter u. Because the set of elementary reactions is
unknown the dimension of u* is unknown. Additionally, there may be elements
unaccounted for in the model. Either laboratory analysis would not be available
for these elements, or scientists might not think these elements are relevant.
Therefore, interpreting u for this setting is not sensible, as u would simply be
an estimate from the data for a wrong model. Additionally, modeling the bias
between the computer model and real observations are useful to achieve accurate
predictions from a computer simulator where there will be some discrepancy.

Utilization of this methodology would be as follows. Samples and pH are taken
at each location of interest in a SX plant simultaneously. Time between each
sample set is recorded. Besides the first data set, each data set would have the
initial conditions of the previous data set and the elapsed time. Given this data
set and an initial design for the computer simulator, the KOH-IMSPE criteria
would be used to sequentially gather simulation data for improved prediction.
All the data would then be assimilated and could be used to provide out of
sample predictions, with the benefit of a reduced computation time relative to
the simulator due to the predictions being obtained from GP surrogates.

6.6 Discussion and Conclusion

KOH-IMSPE was derived to aid in the prediction of a high dimensional problem
where multiple elemental equilibria need to be predicted from a chemical
process for which only observational data is available, and where a simulator
is computationally expensive. Notably, with this application the goal is not
accurate inference on u, but instead improved prediction. The KOH-IMSPE
methodology has been shown to be able to provide improved predictions for field
data with less computer simulator data compared to space filling alternatives.
The methods also generalize to higher dimension. Interestingly, for both toy
examples explored, not only was the mean RMSE better than the space filling
alternatives, but the variance in the MC experiment was less.

For accurate inference on u another criteria, and possibly other calibration
structure, would be appropriate. For example, one may undertake a simulation
experiment toward other goals such as optimization, sensitivity analysis, or
reliability and there are design/active learning criteria targeting those (Jones,
Schonlau, and Welch 1998; Ranjan, Bingham, and Michailidis 2008; Cole et al.
2021).

Further work must be completed for adapting KOH-IMSPE for the motivating
problem. First, all toy problems examined in this publication were functions
with one output, while the set of differential equations used to model p elements
would have greater than or equal to p outputs. Each element, as part of a
simultaneous observation, could be modeled using the typical KOH framework
using GPs which were independent between elements. KOH estimation of the
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tuning parameter v would then be possible using the joint likelihood of all
elements, where each set of field data utilizes the same estimate of %. Then,
KOH-IMSPE would need to be adapted for vector valued functions. The original
derivation for KOH-IMSPE was for vector valued functions. However, because
that implementation is untested, details are not included. For a vector valued
function, a scalar value of IMSPE can be produced by either using the trace or
determinant of the IMSPE matrix. Implementation of this method and testing
on a toy problem would be necessary before use on a real data set.

These methods still need to be tested with real data. Real data in part was not
used because some of the statistical and computational details still need to be
worked out before use. However, a full real data set was not yet available in
part due to delays in testing a full scale processing plant. This derivation and
testing of KOH-IMSPE on a data generating mechanism with a scalar output
is a small step towards the efficient assimilation of real and simulated data, in
order to reduce data requirements for modeling solvent extraction processes.

However, the contribution in this chapter is notable to the statistical literature.
Calibration of simulators is useful to a wide range of scientific applications.
The efficient collection of data near the estimate of the tuning parameter @ has
the potential to significantly reduce computational requirements for calibration
problems.



Chapter 7

Conclusion

7.1 Summary

In this dissertation, Bayesian methods were presented which address specific
process engineering problems, but can be applied outside of specific process cases.
The Bayesian data reconciliation model in §3 provides more accurate results
through the use of sensible prior distributions, full uncertainty quantification,
and model selection. Particularly, the utilization of a normal prior distribution
truncated at zero provides advancements in accuracy for the low and variable
REE concentrations found in AMD.

§4 provides a quantitative standard for estimating if process streams are ap-
proaching steady state conditions, and provides estimates for steady state flows
under the condition that the process is at steady state. Providing this standard
allows for systematic comparisons between processes using all available data.
Having a consistent method for determining steady state provides advantages
over inconsistent opinion based methods by removing some of the human factors.

Bayesian models using a Gaussian process prior can be applied in conjunction
with active learning to minimize data requirements for the prediction, optimiza-
tion, and the calibration of simulators for highly complex systems. §5 illustrated
the potential for optimization criteria to be used for finding and testing the
optimum of an unknown process. Often less data was used in for the simulation
experiment in §5 than in mineral processing related publications which use
response surface methodology for prediction.

When real data is expensive or can only be collected observationally, but a
process simulation is available, Bayesian Gaussian process models can be used
to assimilate real and simulated data, model the bias between a simulation
and real observations, and reduce the computation time required to evaluate a
simulator. Utilization of simulator data is particularly useful for processes where
direct control of experimental factors is difficult or impossible, but obtaining
obseravtional data for a process is easy. For example in SX processes design
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of experiments which dictate initial organic and aqueous phase concentrations
is often infeasable, but sampling the system after a new feedstock has been
introduced is easy. §6 illustrates how Bayesian calibration methods can be useful
for SX reactions, and introduces novel statistical methodology for reducing
simulation computation time which is useful for the high dimensionality of a
SX process.

7.2 Conclusions

Evidence has been provided which shows Bayesian methods can be used to
provide further uncertainty quantification and prediction accuracy, while reduc-
ing data requirements, in mineral processing applications. The purpose of this
document is to illustrate such utility in separation processes. The purpose is
not to provide exact conclusions and recommendations about solvent extraction
systems or rare earth element concentration process. Instead, the complexity
of concentrating a set of multiple elements from a low concentration feedstock
has provided the motivation for furthering Bayesian methods for separation
processes, and the methods derived can be used for any separation process.

Some similarities are present between the methods presented, for example the
use of a Gibbs sampler to obtain samples from marginal posterior distributions
in §3 and §4. However, there is not clear coherence between all of the methods
and some methods are not compatible for general cases. Using the steady state
inference methods in §4 would be difficult if one wanted to model a SX system
over time using the methods in §6

Instead, the methods are presented for use independently, which provide en-
gineers the creativity to piece these general methods together as required for
their problem. One would be able to use the steady state inference methods in
§4 to consistently select when their process achieves steady state, and then use
the relevant data for steady state Bayesian data reconciliation presented in §3.
Similarly, one could use the methods in §4 and §5 for a process which needs to
reach steady state by optimizing the inferred value of [y] from a collected data
set. The methods presented can be synthesized in an uncountable number of
ways, and the independent nature of their presentation allows process engineers
to implement Bayesian statistical methods as appropriate.

7.3 Recommendations for Future Work

Work on Bayesian methods for separations is in no way complete. An alternate
title for this dissertation could be A Handful of Bayesian Methods for Separations,
as many areas of present day Bayesian inference and statistical methods are
completely absent. Instead this presentation illustrates how some methods
can be useful, which may inspire further investigation into applied Bayesian
methods for separations.

Some areas for future work in this area are clear. The methods in §5 and §6
are tested on simulation studies, and using these methods to optimize a process
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and calibrate a simulation for improved prediction with real data is an easy
next step. The Monte-Carlo experiments in §5 and §6 would not be repeatable
with real data, but the use of these methods on real data still needs to be
demonstrated.

There is certainly room for the Bayesian methods presented to be further
modified for improvement. However, more complicated models are not always
better. More complex covariance structures for Bayesian data reconciliation
could be inferred using Gaussian graphical models (Carvalho and Scott 2009).
Such an implementation would limit the large number of comparisons required
using Bayes factors in order to entertain covariance structures outside of what
was introduced in §3.

Bayesian vector autoregression models (Litterman 1986) are vector valued
versions of the scalar autoregressive functions overviewed in §4. An investigation
into using vector autoregression models could potentially allow for similar utility
of the methods in §4, but utilize the information from all sampling locations
simultaneously.

Besides real world application, there are many more Bayesian methods which
can contribute improvements in separations modeling. Active learning can be
used to sequentially gather real data for predictive purposes, as part of a design
of experiments. A significant effort was made to include this application in
this dissertation using solvent extraction shake tests. Difficulty was found in
stipulating the boundaries parameters used to run experiments which would
produce usable results. Often after mixing an aqueous and organic phase a
stable emulsion would form, sometimes settling into three phases over long
periods of time. For these tests collecting an uncontimanated aqueous solution
was difficult or impossible. Obtaining assay data on an experiment which
produced three phases would be not be useful as there typically was no distinct
boundary between aqueous and organic phases. Additionally equilibrium pH
would often be far outside of the desired range, making the data not useful for
process modeling.

The difficulties in collecting SX data for active learning lead to the more simple
idea of obtaining observational data for calibrating a simulator in §6. Using
active learning to gather real SX shake test data may require a more refined
approach. Active learning could be used in an initial study to find the contour
(Cole et al. 2021) separating tests which are unlikely to form a stable emulsion
and have a pH in the correct range from those which do not satisfy those
conditions in order to refine the input space. Additionally, a low dimensional
example with fairly low concentrations would provide insight into using these
methods for SX shake tests, and the use non-stationary GP models could better
handle chemical reactions with abrupt changes.

Equilibrium modeling was explored in §6. Computational issues aside, deriva-
tions for the methods in §6 can be found in closed form for a vector valued
co-kriging GP (Ver Hoef and Barry 1998). Strictly using the methods in §6
would require for multiple elements in equilibrium to be modeled independently,
requiring a simulator to be recalibrated for each element in each phase. Utilizing
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a co-kriging GP to model the concentrations of all elements simultaneously
would likely improve the calibration step and possibly reduce the number of
simulator runs required.

Last, but not least, outside of a small part of §3 little consideration is given
in this text to environmental or economic feasibility, with a primary focus on
analysis of the technical capabilities of a process. Bayesian methods which
provide samples from a posterior predictive distribution can be directly used
with a Monte-Carlo financial analysis. Life cycle assessment (Klopffer 1997;
Finnveden et al. 2009) is a critical part of estimating environmental impacts
and COs emissions of separation processes. Research merging samples from a
predictive distribution of process technical performance with the Monte-Carlo
capabilities common with life cycle assessment software could inform a sensitivity
analysis of environmental impact with technical performance results from real
data.

Obviously work on adapting Bayesian methods to separation engineering is far
from complete. Once again, the purpose of this dissertation is not to provide the
details for every possible method. Instead the goal is to give others a starting
point, via references and some inspiration, as to how they can better quantify
uncertainty for decision making in their own process engineering problems.



Appendix A

Bayesian Data
Reconsciliation

This section was accepted as part of a publication in the international peer
reviewed journal Minerals Engineering. Citation details are provided below:

Koermer S, Noble A (2021). “The utility of Bayesian data reconciliationfor
separations.” Minerals Engineering, 169, 106837.

A.1 Conditional Posterior Derivations

A.1.1 Joint Likelihood

The likelihood, conditioned on the model parameters, of independent and iden-
tically distributed random observations is equal to a product of the probability
of each observation.

K
£(@.8ly) = [J@m =727 |02z XP 0 wxD)
k=1
K
x H |Q|*%e*%(yk*Xﬂ)TQ_l(yk*Xﬁ) (A1)
k=1

o | F et D = XB)T 2 i XB)

A.1.2 Inference on 8

The conditional posterior distribution p(B8|X,y, 2, pno, Vo), is derived by mul-
tiplying the truncated multi-variate normal conjugate prior distribution p(8)
with the conditional likelihood £(B|€,y), derived from (A.1) and dropping the
conditioned terms when possible. Let X be the row-wise repetition of X K
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times, and Qg be the Kronecker product Iy ® 2. pg and V;) are parameters
of p(B), specifying the prior mean and variance of 8. I[8 > 0] is an indicator
function equal to 1 when 8 > 0 and 0 otherwise.

p(BIX,y, Q) o L(B|X,y,2)p(B)

x p(ﬂ)|ﬂ|7§€7% Z::I(yk*XB)Tﬂfl(yk*Xﬁ)

x e~ 2 W-XKB) U W-XxB) o= 3(B-po) Vo (B-po) I[85 (]

. e—%((/3—(Kfor1X)*IXTQ*1Kgi,j)T(KXTfrlX)(ﬁ—(KXTfrlx)*lXTQ*IKQ,-,,-)Jr
e (ﬁ_HO)TV()il(ﬁ_NO))I[IB > 0]

- 67%(ﬁT(KXTQ_lX+VO_1),672(XTQ_1KQM+V0_1p,0),8+

e Kgiszrl(KXTn*X)*leQ*lKgi,j)I[IB > 0]

=N (Vi + KX X)) NV o + KXTQ y), (Vi "+ KXTQ X))

(A.2)

A.1.3 Inference on crij

The conditional posterior distribution p(aﬁ ;1X,y, B), is derived using the inverse
Gamma conjugate prior distribution p(aij), with parameters oy and Sy. Note,
elements of y and X are dropped when possible.

K

. |Q|—%e—%Zkil(yk—XB)Tﬂfl(yk—Xﬂ)(Ug,j)—ao—le—af,jﬂo
x (07, Fe (7)™ e T A3
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k=1

A.1.4 Inference on X;

The conditional posterior distribution p(3;| X, y, B), derived using the inverse
Wishart conjugate prior distribution p(3;), with parameters vy and Sy. The
trace identities tr(A + B) = tr(A) + tr(B) and tr(ABC) = tr(CBA), as
well as a determinant property of block diagonal matrices are required for this
derivation.
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A.2 Point Estimate Mass Balance

Derivation for point mass balance model adapted from Wills (2006) and used
for the comparisons shown in §3.3.1.1, 3.3.1.2, Figure 3.4, Figure 3.6, and
implemented in the pointmassbal() function.

Let a be a vector of assays, with elements a; ; being the fractional assay for
the k" component of the mass sampled at location i, where i € {f, c,t} around
a node. The goal is to find a, as illustrated in (A.5), where ¥ is a matrix with
v, ; = ar(ak;), A is a Lagrange multiplier, and C' is a matrix of constraints
specifying conservation of mass.

K
S=> (ar—a)" U (ax - a)+ A\ Ca (A.5)
k=1

a must be chosen to minimize S. This is equivalent to minimizing the squared
difference between the observed and estimated values of a, weighted by the
variance of each a, with the constraint. The fractional assay values around a
node are constrained by combining the two product formula and the conservation
of mass equation (A.6).
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c=t=0 (A.6)
F=C+T
—
1=C—(1-0C)
f=cC—t(1-C)
0=f—cC—t(1-C) (A7)

Substitution gives the constraint around a node (A.7), which can be written in
matrix form

f
Ca=[1 -C —-(1-0)]|c (A.8)
t

Solving for a requires first differentiating with respect to a, setting this equal
to 0, and solving and rearranging terms so that a is on the left hand side.

08 — Ta—1 | oaTq—1 T
% => (-2af 0" +2a" ") + N C
k=1
= 2KaT v '+ 2KaT0 + \TC
55 (A.9)
set
=0
94 —
1
6=a— -——VCT)\
a a 2K

Then, finding the derivative with respect to lambda, and setting it equal to zero
gives 0 = Ca, which is our constraint. We can then multiply (A.9) by C on
the left hand side, and set it equal to zero to solve for lambda.

1
P — U T
Ca=~Ca —2KC C'\ =
_ 1 -

=
A =2K(CcvCcT) 'Ca

The solution for A in (A.10) can then be plugged into (A.9) to solve for a.

a=a-vcT(cvch)'Ca (A.11)
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This closed form solu:cion for a is still dependent on the elements in ¥ and the
estimate for C. Let C' be the estimate for C', and an element of the matrix C'.
Let Equation (A.8) be rewritten as Equation (A.12):

f
Ca=[1 -C -(1-0)]|c (A.12)
t

The diagonal of ¥ is simply calculated to be the sample variance of each element
of a. The solution C' is given in Wills (2006) and found using two equations.

Vi = Vig + C?Vo + (1 — C)?Vyy, (A.13)
n o (fe—tr)(ck—tk)
¢ = 2zt Vo (A.14)

ZTL (Ckftk)z
k=1 Vik

Where k indexes a component in a sample, and Vj;, is the variance in the assay
of component k£ at sampling location j. To solve for C an initial value is chosen
and then iteratively plugged into Equations (A.13) and (A.14) until C converges.
Then, plugging this value into (A.11) completes the mass balance giving the
best point estimate for the true assay.

For the two node application, it is important to note that €' is a vector of length
two. Equations (A.12), (A.13), and (A.14) are generalizable to a process with
more than one node. Elements of C' are calculated with Equation (A.14) using
only the values directly related to the mass flows in and out of a the relevant
node. For the two node process in this text, the matrix C' can be written as is
shown in Equation (A.15).

1 —él 0 —(1 - él) O
C = ~ N A.15
0 1 —Cy 0 —(1-0Cy) ( )
A.3 Process Simulation
Table A.1: Simulated Data

CuFeS, TPH Gangue TPH
Sample
Location n Y2 Y3 Ya Ys n Y2 Y3 Ya Ys

Test 1 1.353 1.417 1.200 0.020 0.047  95.753 6.299 0.356 91.466 7.790
Test 2 1172 1.248 1.219 0.018 0.037  95.466 8.348 0.217 90.292 8.265
Test 3 1.364 1.111 1.103 0.038 0.075 100.457 6.846 0.273 87.855 6.877
Test 4 1.371 1.014 1.103 0.033 0.059 106.187 7.976 0.360 92418 7.391
Test 5 1.252 1.331 1.160 0.017 0.047 100.545 8.683 0.364 98.761 6.872
Test 6 1.061 1.143 1.001 0.032 0.058 96.294 5.283 0.335 86.146 6.464
Test 7 1.180 1.211 1.181 0.024 0.042 109.416 7.904 0.241 93.446 7.472
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A.4 MCMC Diagnostics

Table A.2: MCMC diagnostic summary for simulated data.

Model Parameter min(ESS) max(ESS) min(|CD|) maz(|CDJ)
B 96934.15 100000.0  0.0459165 2.464641
Full Cov. 3 97287.22 103756.5  0.0591586 2.216777
3 96620.76 100000.0  0.0336163 1.317138
B8 96614.98 100000.0  0.4513866 1.659906
Indep. Cov. o} 93805.70 100000.0  0.3469462 1.868041
03 94502.35 100516.1  0.3011865 1.933159

Table A.3: MCMC diagnostic summary for real data.
Model Parameter min(ESS) max(ESS) min(|CD|) maz(|CDJ)
Full Cov B 92188.61 94256.58  0.0533900 2.327887
' 3 93421.65  100622.99  0.0033434 2.473025
Indep. Cov B 98459.75 99000.00  0.2361097 1.938821
p- © o 97660.06  102566.16  0.1769926 1.804199

1,j

A.5 BayesMassBal Example

After loading the package:
library(BayesMassBal)

First data is generated:

y <- twonodeSim()$simulation

Then a matrix of linear constraints for the two node process is specified and the
constrainProcess function is used to find the X required for the BMB function.

C <- matrix(c(1,-1,0,-1,0,0,1,-1,0,-1),

2)
X <- constrainProcess( C)

TRUE,

5,

Next, the BMB function is run twice, once for each model structure. The
cov.structure argument specifies the error structure. Setting 1lml = TRUE
also calculates log(p(y|M;)) to aid in model selection later. The vector passed
to argument BTE specifies the number of samples that will be collected.

BTE <- ¢(10000,100000,1)
indep.model <- BMB( X, v,
BTE,

TRUE)

" indep" s
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component .model <- BMB( X, y, "component",
BTE, TRUE)

The resulting variables indep.model and component .model are objects of class
"BayesMassBal" which included samples from the marginal posterior distribu-
tions, information on the priors used, the log marginal likelihood. After running
the BMB function using both model structures, the model that best fits the data
can be chosen using a Bayes Factor.

component .model$lml - indep.model$lml

## [1] 127.67

There is much stronger support for the model that includes error correlation
between sampling locations for a particular component. It is possible to print a
summary of the model where cov.structure = "component" model has been
selected to the R console, and save a *.csv file of this summary to the working
directory for use in other programs, using the summary() function.

summary (component .model, "mass_balance_summary.csv")

A “BayesMassBal” object can be supplied to the mainEff function to produce
an output that can be used to help make a plot like Figure 3.5. mainEff also
requires a function and the range of independent uniformly distributed random
variables. The range of each z is taken from Table 3.1, and fn supplied to
mainEff is to calculate NSR.

netRev <- function(X,ybal){
cu.frac <- 63.546/183.5
feed.mass <- ybal$CuFeS2[1] + ybal$gangue[1]
# Concentrate mass per ton feed
con.mass <- (ybal$CuFeS2[3] + ybal$gangue[3])/feed.mass
# Copper mass per ton feed
cu.mass <- (ybal$CuFeS2[3]*cu.frac)/feed.mass
gam <- c(-1,-1/feed.mass,cu.mass,-con.mass,-cu.mass,

-con.mass)
f <- X Y*% gam
return(f)
}
rangex <- matrix(c(4.00,6.25,1125,1875,3880,9080,20,60,96,208,
20.0,62.5), 6, 2)
location.model[["MainEffects"]] <- mainEff(location.model,
"netRev",
rangex,
3,
100, 100)
See vignette("Two_Node_Process", package = "BayesMassBal") for code

taking the output of mainEff () and generating Figure 3.5
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Appendix B

Steady State Estimation

B.1 R Code

library(BayesMassBal)

ssest <- function (y, c(500, 20000, 1), FALSE)
{
require(LaplacesDemon)
require (tmvtnorm)
burn <- BTE[1]
total <- BTE[2]
every <- BTE[3]
collected <- ceiling((total - burn)/every)

y <= drop(y)

Y <- y[-1]

X <- matrix(1, length(y) - 1, 2)
X[, 2] <- yl[-length(y)]

sig <- rep(NA, collected)

beta <- matrix(NA, 2, collected)

sigsamp <- var(y)
if (stationary == TRUE) {
BO <- c(mean(y), 0)
VOi <- diag(c(1/(sigsamp * 100), 1/(1000)))
VOiBO <- VOi %x% BO
XTX <= t(X) %% X
V <- solve((1/sigsamp)*XTX + VOi)
bhat <- as.vector(V %xJ (VOiBO + (1/sigsamp) * t(X) %x%
Y))
1b <- c(-Inf, -1)
ub <- c(Inf, 1)
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else if (stationary == FALSE) {
bhat <- as.vector(solve(t(X) %x*% X) %x% t(X) %x% Y)
XTXi <- solve(t(X) %*% X)
V <- XTXi * sigsamp
1b <- c(-Inf, -Inf)
ub <- c(Inf, Inf)
}
bsamp <- bhat
a <- length(Y)/2
for (i in 1:total) {
bsamp <- as.vector (rtmvnorm(1, bhat, v,
1b, ub))
ymXB <- Y - X Y%x*% bsamp
b <- 0.5 * t(ymXB) %*% ymXB
sigsamp <- rinvgamma(1, a, b)
if (i > burn & ((i - burn)/every)%hl == 0) {
save.sel <- (i - burn)/every
betal, save.sel] <- bsamp
siglsave.sel] <- sigsamp
}
if (stationary == TRUE) {
V <- solve(XTX * (1/sigsamp) + VOi)
bhat <- as.vector(V %xJ (VOiBO + (1/sigsamp) *
t(X) %*% Y))
}
else {
V <- XTXi * sigsamp
}
}
if (stationary == TRUE) {
expectation <- beta[l, 1/(1 - betal2, 1)

samples <- list( betal1l, ], betal2, ],
expectation, sig)
}
else if (sum(betal2, ] <= -1) == 0 & sum(betal[2, ] >= 1) ==
0) {
expectation <- beta[l, 1/(1 - betal2, 1)
samples <- list( betal1l, 1, betal2, ],
expectation, sig)
}
else {
samples <- list( betal1l, ], betal2, ],
sig)
}
out <- list( samples, stationary, y,

"time-series")
class(out) <- "BayesMassBal"
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return(out)
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Appendix C

Active Learning for
Bayesian Calibration of
Solvent Extraction
Simulators

C.1 Kennedy and O’Hagan IMSPE Derivations

C.1.1 Ingegrals

Details are provided for evaluating the integrals required to calculate KOH-
IMSPE in closed form when the GPs used in modeling the computer simulation
and bias function both utilize a Gaussian coraviance kernel.

For matricies WJV[,M = jol k]uk%;[dl’, WM,B = .[-01 kngdx, and WB,B =

fol kBkgdx, where kjp; and kp utilize the Gaussian covariance function and
data locations occupy the rectangular space [0, 1)%, the ¢, j element of W, g can
generally be found as:

W, (T4, T5) H o g, ) kg (xz; ) day (C.1)

C.1.1.1 Wy

[ kM dey  [KM KM e
W = (fxg) (T f) S\J/‘[@f) (jrvamy) (C.2)
[f (7n xy) :nf f)dxf fk(mzf)k(zf,m)dxf

When integrating the matricies in (C.2) over the dimensions of Z, integrals
used in evaluating the product (C.1) are equivalent to the derivations provided
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in Binois et al. (2019), shown below.

NorY = 21)? 2 (2147
war e (z00, 210) = Y exp <—(Z L~ %) > <erf <(Z it ZJJ))

4 201, 2001,
+ erf Zid T+ 2
29]\/[’[

To use gradients for the search of the Z € £ which minimizes KOH-IMSPE, the
derivative of Equation (C.3) is:

(C.3)

Owng m(zig, 21)
0%

R AY: erf (w> + erf (Zi,l+51)
\/?eXp L 2 A (zi0 — 21) V20 V20u
2 200

L T2 (e (-t B _ g (e 5
2V 7 \7P 20, P 200

Where erf() is the Gauss error function. However, for the case where z;; = 7,
instead the derivative in (C.4) should be used.

duan(Z,2) _ (—23[2) — exp (_2(4—1)2> (C4)

0z O O

Because point estimates of 4 are taken, integrating over U space results in the
following terms for evaluating (C.1):

M M .
/k(f,Uf)k(Ufaf)duf =1
/k%uf)k%fM)duf = 1kaf\al,m> (C.5)

M M _ .M M
/k(f,qu)k(qu,nl)duf - k(ﬁ,m)k(ﬁ,m)

Where, when in U space, f = 1, predictive location uy = @. m is at the model
data location in U space.

For gradient based minimization of KOH-IMSPE, differentiation of (C.5) with
respect to 4 is as shown in (C.6).
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B,
B / K g g ey = 0
O [ m 0
B | Rkl mdur = 1ny 5ok m) (C.6)
0 ak(m @) Ok %m)
kM kM dup = kM kM
81);/ (mowg) Fag.m) WU = g2 = Fam) F Kim.a) —5

C.1.1.2 Wuyp

M B
Wwn,B = fkj(\/{’”f)k(gfaf)dxf Oy > V.
s k(m,zf)k(xf,f)dxf OmeNf

When integrating the matricies in (C.7) over the dimensions of Z, integrals used
in evaluating the product (C.1) require care due to the fact that £ and k?
have different lengthscale values. The result is shown below, where z; originates
from kP, and therefore only contains field data coordinates in Z space.

war,B (%, 25,1) = exp JI_Z” 1 - X
AT 9Bz+9Ml 2 9Ml 931

9Bzzll+9MzZJz 9312L1+9MLZJ1 -1
0B,14+0n 1 0B, 1+0n,
—erf
71 1 1 71
9ML 9ML + 05 )

(C.8)

Differentiation of (C.8) with respect to Z for gradient based minimization of
KOH-IMSPE produces:
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ownr,B(Z1,j5,) _
0%

Onazi0+0B.0%

_ =z I
0 +0 - — - 1.
e ButoM 1 1 ~ Oni+0B,
—_— \/7'(' ( + (20— Z) | erf -

O+ 05, Op1 Oy | L\ !
(7 + 72)
M, B,l

Ori 9B,

—1
1 1
(9M,z + 93,1)

1 1 22
+ (€] zi1+6 z) 5 2
("M,l GB,l) M,1%j5,1 B,l*1l _ 1 n i BM,lzj,l‘*'eB‘I,zl 1
05, 6_ Onr 195,102 —e EYRN YRR

)

(9M,zzj,z+93,151) -1
f

er +

Note that because of the form of (C.7), when differentiating z; only corresponds
to field data.

Because point estimates of 4 are taken, integrating over U space results in the
following terms for evaluating (C.1):

M B —
/k(f’uf)k(uf’f)du]f =1

(C.9)
M B _ .M T
/ R Klug, @ = Kim,a) 1N,

Differentiating equations (C.9) with respect to 4, for gradient based minimization
of KOH-IMSPE produces:

9 M B
o | Frapuy.ndus =0
) y (C.10)

okM™
M B _ (m,a) .7
oty /k(m7uf)k(uf7f)duf T o 1Nf

C.1.1.3 Wpgp

B B
Wp g = [f ktan k@ nd@r ONyxn, (C.11)
' ON,, x N} ON, X Ny,

Evaluation of all entries in Wp p is only related to X space. For the Gaussian
kernel, the integral required for evaluation is equivalent to (C.3). Because only
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the dimensions in X are included in kP, the product (C.1) is over a lower
dimensional space than [Z, U].

Additionally, in the search to find the additional data point & which minimizes
KOH-IMSPE, 222 — ¢,

C.1.2 Block Matrix Inversion
Let:

Ky  vumks
Ky, = Vs kT varkia.s)

Where Ky g is of the form specified in Equation (6.15) and:

EM
vmks = v k](‘;a:)

(m,Z)

VMk(i,fc) = VMk(.i,it)

-1 .
KM+1,B can be found as:

M+1,B = _7VM]€TK 1 (C.12)

= Kyp+i VMKMlBk kTKA;B —;VMKJ;[{B/%}
b

Where b = vakz ) — vikd Ky gka.

To differentiate block matrix (C.12) with respect to Z we need to differentiate
each block individually. Using the chain rule to differentiate, the resulting
derivatives are:

ob~t ks OkT
=202 (kTR 2+ 2K ks C.13
55@1 VM( T **M,B 8‘%[ + 69?; M,B™T ( )
a(zl)VJQvf A}%BkikgKﬂ}%B) 1, 1 8k: 1 8b‘ 1 T
1 ks
b 2 KJV[1B a~ kTKMlB
(C.14)
Otvu Ky pks  9b~1 1 Ok
) = Kitoks + v Kty — C.15
853[ (9%‘1 vM M,B * bl/M M,B 85?[ ( )
ObvnklKyty  (0bvnKaiphs ) 16
0% B 0% (C.16)
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C.2 Solvent Extraction Modeling

C.2.1 Field Data Generation

A REE or metal ion with a charge of 3+ reacts with D2EHPA and TBP
as shown in Equation (C.17). Since it is difficult to measure [RE(TBP)s]org
and [RE(D2EHPA)s]oe, HoAo is taken to be the sum of both in practice.
Additionally, this derivation is for mixing of an aqueous phase with a fresh
organic phase containing no concentrations of rare earths or gangue metals.

[RE*Jag + [3(HA)2Jorg = [RE(HA)sorg + 3[H]aq (C.17)

For a single element (RE), the set of elementary reactions in equation set (C.18)
can be assumed for modeling the equilibrium between the two phases. We cannot
know the true reaction mechanism. kF* and kRE are the kinetic constants for
the forward and backward reactions respectively of the i*"" elementary reaction.

kEY
[REE; + [H2A2]org ka [RE(HAQ)]g;rg + [H];rq
kRvIZ":
[RE(HA2)J2 + [H2AzJorg k%E [RE(HA,))5% + [HIY, (C.18)
kY

aq

[RE(HA )25, + [HaAs]org = [RE(HA)sorg + [H]

-3

While the phase location and ion charge are noted in Equation Set (C.18), these
properties are not explicitly stated afterwards solely to simplify notation. The
law of mass action is then used to derive a system of differential equations
for all reactants and products. However, constraints of the closed system can
be used to reduce the number of differential equations required. Equations in
(C.20) shows how the mass balance around all the RE complexes can be used
to find an equation for the RE concentration at time ¢. Note, for compound
M, [M]; is the concentration at time ¢ and [M] is the initial concentration of
compound M at time ¢t = 0.
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3 3
[RE]; + Y [RE(HA)J; = [RE]o + Y [RE(HA2)i]o (C.19)

i=1 =1
—

[RE]; = [RE]o +

[RE], = [RE]p — Y _[RE(HA,):], (C-20)

=1

Similarly, the mass balance around A in Equation (C.21) leads to the constraint
n (C.22).

3 3
[H2A2]t + ZZ X [RE(HAQ)IL]t = [H2A2]0 + ZZ X [RE(HAQ)IL]O (021)
i= _ i=
[HQAQL& = H2A2 0 +W ZZ X RE HAQ) ]
[HoAo)r = [HaAg)o — Zz x [RE(HA2);]; (C.22)

Lastly, the balance around [H] in (C.23) is used in conjunction with the constraint
(C.22) to find a constraining equation for [H];, as shown in (C.24).

[H]: + [H2Az] = [H]o + [H2Az]o (C.23)

[H]t = [H]O + [H2A2]0 — ([HQAQ]O — Z’L X [RE(HAQ)At)
[H]; = [H]o + Y i x [RE(HA2)]; (C.24)

i=1

The equations in (C.20), (C.22), and (C.24) provide concentrations for all
elements besides those which are RE bonded with HA5. Differential equations

based on the law of mass action are required for these complexes, and are shown
as Equations (C.25), (C.26), and (C.27).
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@ = KRV [RE][HaAs] + RS [RE(HA2)-)[H] (C.25)
— KET[RE(HA)][H] — k¥ [RE(HA2)][Ho Ao

w = k5 [RE(HA)][HoAg] + 25 [RE(HA)s] [H] (C.26)
— KES[RE(HA2)|[H] — K5 [RE(HA)2][Ho A

w = ESP[RE(HA,)o] [HoAs] — ERE[RE(HA,)3)[H] (C.27)

In practice, Equations (C.20), (C.22), and (C.24) are substituted in for variables
[RE], [H2A2], and [H] which allows for the differential equations to only be depen-
dent on the initial conditions as well as [RE(HA»)], [RE(HA2)2], [RE(HA3)s].
The system of differential equations can then be solved with the Runge-Kutta
algorithm.

Sodium concentrations in the organic phase must be taken into account. Since
the sodium ion has a charge of just +1, only one elementary reaction is used
for equilibrium modeling. However, because the fresh organic is saponified with
NaOH, there will be sodium complexed with the extractant before the shake
test takes place. The constraint for modeling sodium in the aqueous phase is in
(C.28).

[Na}t = [NaHAg}o + [NA]O - [NaHAg]t (028)

The differential equation for modeling sodium concentration in the organic
phase is shown in Equation (C.29).

d[NaHA,|

= kY% [Na][HaAo] — KN4 [H][NaHA,] (C.29)

For modeling multiple elements, the constraints, notation, and set of differential
equations need only to be adjusted slightly. A metal M?j, may require o; mols
of HyAs to form the complex M(HAz),,. To model all M;’s in the set of metals
(2, the simplifications in (C.30), (C.31), and (C.32) can be made. To model the
metals complexed with organophosphorous acid, a; differential equations are
required for each M;. 3°7_, a; differential equations with 2 x 3°%_, a; kinetic
constants are required, where p = the length of €.
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[M;]e = [Mj]o — Z[Mj(HAZ)i]t (C.30)

[HaAs) = [HaAs]o — ZZZ x [M;(HA3),]; — [NaHA); + [NaHA,]o (C.31)

]111

O—I—Zsz (HAg),]; + [NaHA,]; — [NaHA,]g (C.32)

Jj=11i=1
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