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1. Background

Integrated laboratory testing and process modeling are often used to optimize metallurgical process operations.
While many metallurgical models are available for commercial processes, observations often differ from model
predictions by some amount of bias. Bias can be related to factors unaccounted for in the model including
mineral speciation, and complex chemical dynamics. When the function for describing the biased observations
is unknown, polynomial regression can be used to aid in optimization1. Polynomial and gradient ascent
techniques can get stuck at local optima, and require a large number of tests to ensure convergence on the
global optimum3, making these methods prohibitive for use in the design of laboratory experiments.

2. Research Aims

Optimization through Gaussian Process (GP) regression has established advantages over polynomial regression
for finding the global optimum of high dimensional computer simulations, with less simulation tests3. The goal
of this presentation is to explore the utility of using GP regression in conjunction with Expected Improvement
(EI) optimization criteria4 to find and test the optimum of a noisy chemical process with unknown dynamics.

3. Materials and Methods
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Figure 1: Ce recovery (%) response surface, sans
noise, with sequential testing locations

Ce recovery from leaching is simulated using the function
f(x1, x2) = yShrinking Core(x1, x2) + b(x1, x2) + ε , where
yShrinking Core is the shrinking core model2, b is a bias
function, x1 is the molarity of HCl used in leaching, x2 is
the addition of a leaching additive, and ε is random error.
An 8 point maximum entropy design5 is first tested, and
a GP is fit to the results. Based on GP predictions and
uncertainty of those predictions, an algorithm then finds
the point (x?

1, x
?
2) where it is expected there will be the

maximum improvement in recovery over the previously
tested values.

The simulation is then evaluated at f(x?
1, x

?
2), the GP

model is refit, and another test point is chosen based on
expected improvement criteria. This process is repeated,
sequentially adding each data point to the GP regres-
sion, until convergence on the optimum. Because of the
variability in the data, this procedure was repeated 100 times to observe the mean behavior.

4. Results

The sequential experimental design found and tested the technical optimum in as little as 11 tests. In testing
the algorithm 100 times, 55% of the trials found the optimum after only 17 tests. 91% of the trials found the
optimum in under 27 simulated lab experiments.

5. Conclusion

This proof of concept shows how sequential experimental design can be used to optimize complex processes,
when the process dynamics are not fully understood. In application, this methodology can considerably
reduce metallurgical testwork requirements, leading to superior process optimization at a lower development
cost.

1



References
[1] Box, George E. ; Draper, Norman R.: Response surfaces, mixtures, and ridge analyses. Bd. 649. John

Wiley & Sons, 2007

[2] Gbor, Philip K. ; Jia, Charles Q.: Critical evaluation of coupling particle size distribution with the
shrinking core model. In: Chemical Engineering Science 59 (2004), Nr. 10, S. 1979–1987

[3] Gramacy, Robert B.: Surrogates: Gaussian process modeling, design, and optimization for the applied
sciences. CRC Press, 2020

[4] Schonlau, Matthias: Computer experiments and global optimization. (1997)

[5] Shewry, Michael C. ; Wynn, Henry P.: Maximum entropy sampling. In: Journal of applied statistics 14
(1987), Nr. 2, S. 165–170

2


	1. Background
	2. Research Aims
	3. Materials and Methods
	4. Results
	5. Conclusion

